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ABSTRACT 

This paper presents an architecture to perform speaker 

adaption in long short-term memory (LSTM) based Mandarin 

statistical parametric speech synthesis system. Compared 

with the conventional methods that focused on using fixed 

global speaker representations in utterance level for speaker 

recognition task, the proposed method extracts speaker 

representations in utterance and phoneme level, which can 

describe more pronunciation characteristics in phoneme level. 

And an attention mechanism is deployed to combine each 

level representations dynamically to train a task-specific 

phoneme dependent speaker embedding. To handle the 

unbalanced database and avoid over-fitting, the model is 

factored into an average model and an adaptation model and 

combined by an attention mechanism. We investigate the 

performance of speaker representations extracted by different 

methods. Experimental results confirm the adaptability of our 

proposed speaker embedding and model factorization 

structure. And listening tests demonstrate that our proposed 

method can achieve better adaptation performance than 

baselines in terms of naturalness and speaker similarity.  

Index Terms— speech synthesis, speaker adaptation, 

speaker embedding, phoneme representation 

1. INTRODUCTION

Statistical parametric speech synthesis (SPSS) [1] is more 

robust and apt to control the speaking style of generated 

speech using a small database at current stage, compared with 

unit selection methods [2] and end-to-end methods [3,4]. A 

lot of improvements in SPSS researches were based on a large 

mono speaker recording corpus [5-10]. However, training a 

high-quality acoustic model with limited database and 

synthesizing a new voice of speaker is still a hot topic. 

Generally, speaker adaptive training methods boil down 

to two aspects. One aspect is the speaker representations. In 

[11,12], i-vectors had shown improvements in the quality of 

synthetic speech and controllability of speaker style. 

Learning hidden unit contributions [13] and conversion of 

predicted features using Gaussian mixture models as different 

speaker representations were compared in [11]. In [14], d-

vectors was applied for adaptive speech synthesis. It reported 

that d-vectors based approach achieved better speech quality 

than i-vectors based approach. The above methods used fixed 

global speaker representations for speaker recognition task. It 

is not optimal for the multi-speaker speech synthesis task. On 

this count, the speaker representations were directly extracted 

from raw waveform in [15]. The speaker representations, that 

were trained for speech synthesis task, improved the 

similarity of synthetic speech. The speaker representations 

used in the speaker recognition task only emphasize the 

differences between two persons. While in the speech 

synthesis task, we need more subtle control on each phoneme 

of speech and a speaker embedding that is optimal for the task. 

Another aspect for speaker adaptive training is acoustic 

model structure.  Mono speaker output layers were used in 

some researches [11,12,14]. The performance of speaker 

representations forwarded in different positions of network 

were investigated in [11]. These mono output layers structure 

only relied on speaker representations to guide various style 

generations and tended to generate over-average speech. To 

achieve adaptation in various network for each style of 

speaker, most of researches applied speaker dependent layers 

[16,17] and speaker and language factorization methods [18-

20]. But it may occur over-fitting phenomenon when the 

adaptation database is small. Therefore, the network structure 

for multi-speaker acoustic model need to have adaptation 

function in separate physical areas of network and be able to 

handle the unbalanced database.  

In this paper, we propose a speaker and phoneme 

dependent representations extraction procedure for subtle 

control of synthetic speech. Experiments are conducted to 

investigate the effects of the speaker representations 

extracted by different methods in aspects of corpus and 

algorithm. And the phoneme dependent speaker embedding 

combined the utterance and phoneme level speaker 

representations by an attention mechanism and is trained to 

optimum with acoustic model jointly. In the aspect of model 

structure, we design a network factorization structure with 

each designed function in separate areas to avoid over-

average and over-fitting. The average model and adaption 

model have its own physical network and are combined by an 

attention mechanism to handle the unbalanced data problem. 

The rest of the paper is organized as follows. Section 2 

describes our proposed system architecture. Section 3 

presents the experiments. And the results and analysis are 

presented in Section 4. The conclusions and future work are 

discussed in Section 5. 
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2. METHOD

Fig. 1 shows the architecture of acoustic model for LSTM 

based Mandarin SPSS system. The proposed architecture has 

four components including mean column, adaptation column, 

shared hidden layer and speaker dependent output layer.  

LSTM

LSTM

Embedding

Layer

Lookup

Table

Linguistic features

xt

Sequence of phone ID

{p1, ,pU}

Speaker ID

s

ReLU

LSTM

LSTM

ReLU

Attention

LSTM

LSTM

RNN

Speaker 1

RNN

Speaker s

Output yt

Speaker dependent 

Output layer

Mean 

Column

Adaptation 

Column

Shared 

Hidden 

Layer

Fig. 1 Architecture for the LSTM-based multi-speaker SPSS system. It 

consists of a mean column, an adaptation column, a shared hidden layer 

and a speaker dependent RNN output layers. 

2.1. Framework 

There are three types of input features: speaker ID 𝑠 , 

sequence of frame-level linguistic feature vectors {𝑥1, … , 𝑥𝑇}
and sequence of phone id {𝑝1, … , 𝑝𝑈} for each utterance. All

of them are sent into the adaptation column. The adaptation 

column is designed for adaptative training, which contains 

the embedding layer. There is a look up table procedure in the 

embedding layer. The dictionaries for look up table procedure 

is the global utterance level and local phoneme level speaker 

representations that we extracted respectively before the 

training procedure. In the training procedure, utterance and 

phoneme level speaker representations are combined by an 

attention mechanism to generate phoneme dependent speaker 

embedding. This structure allows the model to decide the 

portion of usage from each level of representations. The joint 

training procedure ensure the speaker embedding is optimal.  

Besides, linguistic features are also sent into mean column 

which captures the shared knowledge across different 

speakers. The outputs of mean column Ω𝑀𝐸𝐴𝑁  and adaptation

column Ω𝐴𝐷𝐴  are sent into the hidden shared layer and

combined by an attention mechanism.  Finally, the output of 

hidden shared layer Ω𝐻𝑆𝐿  are sent into speaker dependent

RNN output layer for each training speaker 𝑠 ∈ {1, … , 𝑆} , 

which is then sent to a vocoder [21] to synthesize speech.  

2.2. Speaker representations extraction 

The speaker representations are extracted before the training 

and used as the dictionaries for the embedding layer in the 

adaptation column. We investigate the speaker 

representations in two aspects. One aspect is the corpus, 

which can be divided into the original utterances, 

concatenated utterances with same phoneme and 

concatenated utterances with only voiced frames. Another 

aspect is the algorithm, which include the d-vector method 

[22] and the i-vector method [23].

The common unit for speaker representation extraction

is an utterance of speech containing different phonemes. It is 

a global utterance level speaker representation. To obtain a 

more delicate phoneme level speaker representation, we seg 

the wave based on the phoneme forced alignment information 

by HTS [24]. And we concatenated the segs of wave that 

contain the same phoneme of specific speaker together and 

extract the speaker and phoneme dependent speaker 

representations. Besides, there are two types of phoneme 

(vowel and consonant) for Mandarin. Further corpus 

processing is done to reserve only voiced frames in the 

concatenated utterances with same vowel, which is called 

concatenated utterances with only voiced frames. 

2.3. Phoneme dependent speaker embedding 

Fig. 2 Combining phoneme level speaker representations with 

utterance level speaker representations using an attention mechanism. 

The previous methods [11,12,14] directly took speaker 

representations (i-vector, d-vector) as speaker embedding, 

which wouldn’t be updated during acoustic model training. 

In this paper, an embedding layer is added in the adaptation 

column to induce task-specific speaker representation. As 

shown in the Fig.2, an input  sequence of phone id {𝑝1 , … , 𝑝𝑈}
of U phones and speaker ID 𝑠 are transformed by the first 

embedding layer into a sequence of local phoneme level 

speaker representations  {𝑥1,𝑠
𝐿 , … , 𝑥𝑈,𝑠

𝐿 } and global utterance

level speaker representations 𝑥𝑠
𝐺 , by applying the lookup

table operation. Then {𝑥1,𝑠
𝐿 , … , 𝑥𝑈,𝑠

𝐿 }  are encoded by a

BLSTM. The last hidden state from both directions are then 

concatenated to form an alternative representation ℎ∗ .The

attention mechanism can adaptively control the balance 

between utterance level 𝑥𝑠
𝐺  and phoneme level ℎ∗  speaker

representations. 𝑥𝑠
𝐺  and ℎ∗ are added together using a

weighted sum, where the weights are predicted by a two-layer 

network: 

z = σ(𝑊𝑧
(3)

tanh(𝑊𝑧
(1)

𝑥𝑠
𝐺 + 𝑊𝑧

(2)
ℎ∗))  (1) 

𝑥𝑠 = z ∙ 𝑥𝑠
𝐺 + (1 − 𝑧) ∙ ℎ∗   (2) 

where 𝑊𝑧
(1)

,  𝑊𝑧
(2)

 and 𝑊𝑧
(3)

 are weight matrices for

calculating 𝑧 , 𝜎()  is the logistic function, and 𝑥𝑠  is the

phoneme dependent speaker embedding.  
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2.4. Shared hidden & speaker dependent output layers 

As shown in the Fig.1, instead of simply concatenating the 

outputs of mean column Ω𝑀𝐸𝐴𝑁  and adaptation column

Ω𝐴𝐷𝐴  , we found that using an attention mechanism that

weights the portion of two columns can improve the system 

performance more significantly when the adaptation data is 

small. Therefore, the outputs of mean column Ω𝑀𝐸𝐴𝑁  and

adaptation column Ω𝐴𝐷𝐴  are combined by a dynamic

weighting mechanism that has been introduced in section 2.3. 

Then the combining vector are forwarded into two layers of 

LSTM. Each speaker has its own output layer for adaptation. 

The vocoder parameters generated for speaker 𝑠, 𝑦𝑡
𝑠, can be

derived as follows: 

ℎ𝑡 = Ω𝐻𝑆𝐿(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Ω𝑀𝐸𝐴𝑁 , Ω𝐴𝐷𝐴))   (3) 

𝑦𝑡
𝑠 = Ω𝑠

𝑆𝐷𝑂𝑅(ℎ𝑡 , 𝑦𝑡−1
𝑠 )       (4) 

3. EXPERIMENTAL SETUP

The composition of Mandarin database is shown in the Table 

1. All the wav files are sampled at 44.1KHz. The 60-dim line

spectral pairs (LSP) features, 1-dim band aperiodicity (BAP)

feature, 1-dim logarithmic fundamental frequency (log F0)

together with their delta and delta-delta deviation, and

voiced/unvoiced (V/UV) flag are extracted with frame shift

5-ms, and frame length 25-ms using WORLD [21]. The input

features are the encoded 379 dimensional one-hot and

numerical linguistic features.

The d-vector neural network had 3 hidden layers. The 

bottle-neck layer had 36 neurons while the hidden layers had 

1024 neurons each. The soft-max output layer had 8 neurons 

corresponding to the number of training speakers. The 

network was trained using cross-entropy training criterion 

and convergence was achieved after 25 epochs. The i-vector 

system was trained using MFCC features, where the UBM 

had 512 Gaussian mixtures. Both d-vector neural network 

and i-vector systems were trained using the KALDI toolkit 

[25] and had 100 dimensions representations for each speaker.

All the BLSTM-related architectures have two hidden layers;

each layer contains 160 memory blocks in each direction.

Parameters of the proposed models are optimized using

AdaDelta [26] with learning rate 0.001. Our implementation

is in TensorFlow [27] and the dropout rate [28] is set at 0.5.

4. EVALUATION AND DISCUSSION

Objective measures used in this paper are Mel-cepstral 

Distortion (MCD) [29], F0 distortion in the root mean 

squared error (RMSE), BAP distortion and voiced/unvoiced 

(V/UV) swapping errors. As for subjective evaluation, we 

conducted MOS tests and AB preference tests to evaluate the 

naturalness and similarity. 20 listeners participated the 

evaluation. In each experimental group, 20 parallel sentences 

are selected randomly from testing sets of each system. 

In this section, OS stands for individual modeling is 

trained with only one target speaker data. SI represents the 

speaker independent model which is trained by multiple 

speakers data but without speaker identity information. Two 

types of systems described in [12] and [14] are built and 

marked as I-Base and D-Base, which use i-vector and d-

vector as speaker representations input respectively. These 

two systems both contain four LSTM layers with 256 

memory blocks. The above systems are four baselines. P 

means our proposed method, where G and L stand for the 

global utterance level speaker representations and local 

phoneme level speaker representations respectively. And I 

and D mean i-vector and d-vector methods. “all” and “voiced” 

repents the concatenated utterances with all the frames and 

only voiced frames as described in section 2.2. 

4.1. Evaluations for multi-speaker speech synthesis 

Table 2 shows the average objective evaluation results over 

female and male speakers respectively. Firstly, by observing 

the results of baselines, the speaker representations can 

improve the accuracy of the acoustic model in the objective 

measures and d-vector based approaches perform better than 

i-vector based approaches.  Secondly, compared the proposed

methods with baselines, there are about 20% accuracy

improvements in all the objective measures.

Thirdly, by comparing the P-G* with P-G*-L*-*, the P-

GD-LI-voiced system achieve the best objective evaluations 

results. We can draw the conclusion that adding the local 

phoneme level speaker representations can improve the 

accuracy. This demonstrate the effectiveness of proposed 

speaking embedding that combine the global utterance level 

and local phoneme level speaker representations. And the 

global speaker representations extracted by d-vector methods 

is better, while the local phoneme speaker representations 

extracted by the i-vector methods is better. A possible 

explanation is that the data size considering different 

phonemes of speakers may be small for DNN training in the 

d-vector extraction processing because there are 47 types of

phonemes in Mandarin. Besides, using corpus with only

voiced frames can further improve the performance of

speaker phoneme representations by the i-vector method. We

suppose that deleting the unvoiced frames makes the variance

of parameters become small in the i-vector extraction method.

This procedure reduces the noise. Fourthly, the female corpus

achieves overall better performance the male corpus because

there is larger corpus.

Subjective evaluation results are showed in Fig.3. 

Among all the system, P-GD-LI-voiced achieves the best 

preference. We can observe that the introduction of speaker 

and phoneme dependent representations can improve the 

similarity performance more than the naturalness. 

Table 1: Composition of Mandarin database (M=Male; F= Female) 

Sentence number Training Validation Test Speaker 

Training 

Large 

set 
9,000×3 500×3 500×3 1 M  2 F 

Small 
set 

900×3 50×3 50×3 1 M  2 F 

Total 29,700 1650 1650 2 M 4 F 

Adaptation 
200×2 

10×2 20×2 1 M  1 F 
50×2 
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4.2. Evaluations for speaker adaptation 

The average objective evaluation results of the new speaker 

adaptation are presented in Table 3. The OS systems are 

trained with the same adaptation data of the new speaker with 

random initialization. According to Table 3, distortions of 

adapted speeches are much lower than the distortion of OS, 

which suggests the importance of model initialization. For 

speaker adaptation, the neural network is updated based on a 

well-trained multi-speaker acoustic model, but for individual 

synthesis it is initialized randomly.  

To investigate of the effectiveness of attention 

mechanism in the shared hidden layer, we use directly 

concatenating the two outputs of  Ω𝑀𝐸𝐴𝑁  and Ω𝐴𝐷𝐴 to replace

the proposed attention mechanism, which is marked as “P-

GD-LI-voiced (no attention)”. It can be observed that the 

attention mechanism in the shared hidden layer can improve 

the accuracy of acoustic model, especially in the low resource 

situation. A possible explanation is that the attention 

mechanism dynamically adjusts the portion of  Ω𝑀𝐸𝐴𝑁  and

Ω𝐴𝐷𝐴  to reach an optimum. By observing the preference

scores of subjective evaluations in the Table 4, it is worth 

noticing that the attention mechanism in the shared hidden 

layer can improve the naturalness of synthetic speech more 

than the similarity. The proposed method achieves more 

preference in both naturalness and similarity. 

5. CONCLUSION

In this paper, we mainly investigate phoneme dependent 

speaker embedding by combining global utterance level 

speaker representations and local phoneme level speaker 

representations using attention mechanism. The speaker and 

phoneme dependent speaker representations give more 

details about each style of speaker and can generate a specific 

vector for guiding different texts. The attention mechanism 

makes the model learn the average model and variation 

among each speaker simultaneously in separate structures. 

Experimental results showed that speaker embedding we 

proposed can control speaker identity effectively during 

speaker adaptive training. Further, we will explore to perform 

speaker identity control by some end-to-end methods. 
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Fig.3 MOS results for multi-speaker speech synthesis. Each system 

evaluates the naturalness (left) and similarity (right) of synthetic speech. 

Corpus with only voiced frames is used to extract local phoneme level 

speaker representations. 

Table 4: Preference scores subjective evaluations 
System A  Scores A (%) Scores B (%) System B 

P-GD-LI-

voiced

53.6/50.86 46.4/49.14 P-GD-LI-voiced (no attention) 

62.5/68.45 37.5/31.55 I-Base

64.3/69.63 35.7/30.37 D-Base 

70.7/80.36 29.3/19.64 SI 

80.6/78.65 19.4/11.35 OS 

Table 2: Objective evaluations for multi-speaker speech synthesis. 
Speaker Male Female 

Systems MCD (dB) 𝐅𝟎 RMSE(Hz) BAP (dB) 
V/UV Err 

(%) 
MCD (dB) 

𝐅𝟎 RMSE

(Hz) 
BAP (dB) 

V/UV Err 

(%) 

OS 6.84 30.74 2.38 5.35 6.65 27.32 2.34 4.82 

SI 7.14 33.65 2.13 5.27 6.94 31.14 2.16 4.87 

I-Base 6.74 25.83 2.11 4.93 6.53 24.62 2.08 4.58 

D-Base 6.57 24.64 2.07 4.86 6.35 24.15 2.03 4.53 

P-GI 6.38 21.93 2.03 4.61 6.41 20.41 2.06 4.49 

P-GD 6.35 21.67 2.26 4.52 6.20 20.37 2.14 4.46 

P-GI-LI-all 5.98 20.34 2.16 4.38 5.78 17.58 1.94 4.25 

P-GI-LI-voiced 5.94 20.36 2.03 4.29 5.73 17.48 1.99 4.22 

P-GI-LD-voiced 5.83 20.51 1.97 4.23 5.83 17.92 1.93 4.15 

P-GD-LD-voiced 5.82 20.32 1.99 4.23 5.74 17.73 1.95 4.15 

P-GD-LI-all 5.77 19.99 1.88 4.21 5.64 16.93 1.87 4.16 

P-GD-LI-voiced 5.53 19.85 1.89 4.16 5.49 16.85 1.87 4.13 

Table 3: Objective evaluations for new speaker adaptation. No attention is trained without attention mechanism in the shared hidden layer. 
Sentence number 200 sentences 50 sentences 

Systems MCD (dB) 𝐅𝟎 RMSE(Hz) BAP (dB) 
V/UV Err 

(%) 
MCD (dB) 

𝐅𝟎 RMSE

(Hz) 
BAP (dB) 

V/UV Err 

(%) 

OS 8.36 30.63 2.57 16.75 9.18 32.56 2.89 23.82 

SI 7.57 28.87 2.32 8.75 8.94 30.25 2.67 10.54 

I-Base 6.93 27.94 2.24 5.35 7.26 28.59 2.39 5.86 

D-Base 6.68 25.38 2.13 4.97 6.97 27.78 2.46 5.76 

P-GD-LI-voiced 5.68 20.37 1.96 4.35 5.96 21.35 2.15 4.68 

P-GD-LI-voiced(no attention) 5.85 20.86 1.98 4.58 6.76 24.65 2.35 4.96 
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