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ABSTRACT

Fluent and confident speech is desirable to every speaker. But
professional speech delivering requires a great deal of experi-
ence and practice. In this paper, we propose a speech stream
manipulation system which can help non-professional speak-
ers to produce fluent, professional-like speech content, in turn
contributing towards better listener engagement and compre-
hension. We propose to achieve this task by manipulating
the disfluencies in human speech, like the sounds uh and um,
the filler words and awkward long silences. Given any unre-
hearsed speech we segment and silence the filled pauses and
doctor the duration of imposed silence as well as other long
pauses (disfluent) by a predictive model learned using pro-
fessional speech dataset. Finally, we output a audio stream
in which speaker sounds more fluent, confident and practiced
compared to the original recorded speech. According to our
quantitative evaluation, we significantly increase the fluency
of speech by reducing rate of pauses and fillers.

Index Terms— Speech disfluency detection, Speech dis-
fluency repair, Speech Processing, Assistive technologies in
speech

1. INTRODUCTION

Professional speakers, who make a living from their speech,
speak clearly and fluently with very few repetitions and revi-
sions. This kind of error-free utterances is the result of many
hours of deliberate practice. On the other hand, a regular un-
rehearsed speaker generally speaks with no real practice of
articulation and delivery. Naturally, words of an unrehearsed
speech contain unintentional disfluencies interrupting the flow
of the speech. Speech disfluency generally comes in the form
of long pauses, discourse markers1, repeated words, phrases
or sentences and fillers or filled pauses like uh and um. Ac-
cording to Tree [1] approximately 6% of the speech appears
to be non-pause disfluency. Filled pauses or filler words are
the most common disfluency in any unrehearsed, impromptu
speech [2].

Examples: https://sagniklp.github.io/pub-speaker-aug/
1Words used for organization or connection: “So, ...”, or “Well, ...”

Considering the diverse factors affecting speaker fluency,
our proposition is to doctor a speech to make it appear fluent
by masking the factors contributing to disfluency. We hereby
propose a system to detect, segment, and remove the most
common disfluencies, namely filler words and long, unnatu-
ral pauses from a speech to aid speakers’ apparent fluency.
Our system takes raw speech as input and outputs a modi-
fied fluent version of it by automatically removing the filled
pauses and adjusting “long” silences.

We interpret the occurrence of disfluencies in a speech
as an acoustic event, and a segmentation approach is taken
for the detection. A combined convolutional-recurrent neu-
ral network (CRNN) architecture is used to achieve the task,
inspired by Cakir et al [3]. Further, a binary classification ap-
proach is taken to detect long pauses between words. After
deleting the filler-words and adjusting the silences the fluent
version of the speech is obtained. The performance of our
system is evaluated on speeches of non-native speakers of En-
glish using fluency metrics proposed by [4]. We also propose
an assistive user interface which can be used to help users’ to
visualize and comparatively analyze their speech. The essen-
tial contributions of this paper are: 1) A disfluency detection
mechanism that works directly on acoustic features without
using any language features; 2) A silence modeling scheme
directly conditioned on the previous speech segment; 3) A dis-
fluency repair technique to help users improve a pre-delivered
speech.

2. RELATED WORKS

In recent years, there have been many works related to speech
disfluencies, spanned across the domains of psychology, lin-
guistics and natural language processing (NLP). The prime
motivation for disfluency detection in NLP is to better inter-
pret the speech-to-text transcripts for natural language under-
standing systems.

Charniak et al’s initial work [5] focused on classifying
the edit words (restarts, repairs) from the transcription text
using a boosted classifier. More contemporary methods ap-
plied a noisy channel model to detect and correct speech dis-
fluencies [6, 7, 8]. Later, Hidden Markov Model (HMM),
Conditional Random Field (CRF), Integer Linear Program-
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ming (ILP) based [9, 10] methods were introduced to tackle
the same goal. Recent methods define it as a joint task of
parsing and detecting disfluency [11, 12]. Even with convinc-
ing results, these methods are limited to pre-defined feature
templates (lexical, acoustic, and prosodic). With advances in
deep learning, most recent methods rely on recurrent neural
networks (RNN) [13, 14] using word embeddings and acous-
tic features instead of pre-defined feature templates.

All the techniques above, make an assumption of hav-
ing an automatic speech recognizer (ASR) in the pipeline and
work at the transcript level. Also, these systems have never
been paired with an acoustic level repair scheme with a goal
of exploring the use-cases from the perspective of the listener
and the speaker.

In our work, we address these motivations by devising a
disfluency detection relying solely on acoustic features, com-
bined with a repair method to synthesize temporally fluent
speech segments.

3. PROPOSED METHOD

3.1. Disfluency Detection

Our work focuses on building a system that can be used not
only as a disfluency detection system but also provide a way
to understand users’ disfluency better. The primary motiva-
tions of this work are the following-

• Detect disfluencies without relying on transcript.

• Consider long pauses as disfluency. On acoustic level,
this is a big factor of the speakers’ fluency.

• Repairing disfluent segments to help users create better
speech.

The types of disfluencies we considered in this work, are the
use of filler words, and intermittent long pauses.

3.1.1. Dataset

The dataset used for filler word segmentation is obtained from
Switchboard 2 and Automanner3 [15] transcriptions. To label
disfluent silences we use combination of a silence probabil-
ity model [16] and a disfluency detection model [17]. For
each word pair utterance the silence probability model gives
a probability of a silence (Psil) occurring between them. A
word pair with low Psil but a significant amount of silence
is labeled as disfluent. If a word pair doesn’t exist the model
vocabulary, we resort to the following approach. General dis-
fluencies accompany longer silences, therefore any silence
within a disfluent segment (detected by [17]) is labeled as
an unnatural pause. Additionally, the word pairs surrounded
with silences more than 0.7 seconds are also labeled simi-
larly. This choice is experimental and can be considered safe

2https://www.isip.piconepress.com/projects/switchboard/
3https://www.cs.rochester.edu/hci/currentprojects.php?proj=automanner

because it’s considerably higher than the suggested quantita-
tive measure of micro-pauses (fluent), 0.2s [18]. On the other
hand, additional fluent pairs are collected from TIMIT [19].

3.1.2. Features

In this step, frame level acoustic features (log mel band en-
ergy or mel frequency cepstral coefficients (MFCCs)) are ob-
tained at each timestep t resulting a feature vectormt ∈ RC .
Here, C is the number of features (in frequency dimension)
at frame t. The task of segmenting the filler words is formu-
lated as binary classification of each frame to its correct class
k (Eq. 1).

argmax
k

P (y
(k)
t |mt,θ) (1)

Where, k = {1, 2} and θ are the parameters of the classifier.
In the training data, the target class y

(k)
t = 1 if frame t be-

longs to class k (determined using the onset/offset timeline of
k associated with a sound segment) , otherwise zero.

3.1.3. CRNN for filler word segmentation

We propose a Convolutional Recurrent Neural Network
(CRNN) for filler word segmentation. A similar architec-
ture is previously used for sound event detection (SED) [3]
and speech-recognition [20] task. The architecture is a com-
bination of convolutional and recurrent layers, followed by
feed-forward layers.

The sequence of extracted features M ∈ RC×T is fed
to the CNN layers. Then Max-pooling is applied over the
frequency dimension. Output of max-pooling is a tensorPc ∈
RF×M ′×T . Where, F is the number of filters of the final
convolution layer, M ′ is the truncated frequency dimension
after the max-pooling operation.

To learn the features over time axis, F feature maps are
then stacked along the frequency axis- Ps ∈ R(F×M ′)×T .
This is fed to the RNN as a sequence of frames pt which
outputs a hidden vector p̂t. The ith recurrent layer output is
given as in Eq. 2. Where, F is a function learned by the each
RNN unit. In this work, we use GRUs as presented in [21].

p̂it = F(p̂i−1t , p̂it−1) (2)

Final RNN outputs p̂ft are then fed to a fully-connected
(FC) layer with ReLU activation and G ∈ RFC1×T is ob-
tained where, FC1 is the number of neurons of the layer. Fi-
nally, another layer with softmax activation is applied to get
the class probabilities. Although classification is on frame
level, the longer context is preserved by the recurrent structure
of the network. The CRNN training objective is to minimize
the cross-entropy loss with l2 regularization (Eq. 3)

L(θ) = −
∑
0:t

∑
k

logP (y
(k)
t ) + λ||θ|| (3)
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Fig. 1. (a) Block diagram of the filler-word segmentation; (b) Silence modification pipeline: The dashed line on the histogram
shows the median time of the fluent silences

3.1.4. Disfluent silence Classification

The problem is formulated as a binary classification task,
given a silent segment Z, the task is to decide whether it’s a
disfluent or a non-disfluent silence. Classifying a silence only
makes sense when it’s combined with adjacent utterances.
Because an occurrence of silence is apparently driven by the
utterance and also heavily influenced by disfluencies. Thus,
it’s not always evident that all pauses higher than a significant
threshold is disfluent.

We train a binary classifier to achieve this task. Given
a silent segment Z, it’s first padded with the one-word utter-
ances on the left and right (Ẑ). Then, the MFCC features are
extracted and we take the mean over the frequency bands to
create the feature vector zi ∈ RT . T is the number of frames
in zi. Segments are of variable length thus zi padded with
trailing zeros prior the classification. In test time instead of
the previous and next word boundaries, a fixed length time
window is used. In our experiments, we found that 0.8− 1.0
secs. give satisfying results.

3.2. Disfluency Repair

To remove the fillers, simplest case is to silence the predicted
segments. However, it’s often helpful (such as when ambient
noise is present) to use a decomposition mechanism [22] to
separate the background noise and vocals first. Then, use the
background segments as replacement of the fillers. On the
modified track the silences are then segmented (Z) and finally,
the classification is done. Now, the silent segment lengths are

Features CNN RNN FC

log mel
conv1 [32,(8,8)], conv2 [64,(4,4)]
maxpool1 [8,4], maxpool2[4,2]

dr=0.25

l=3
d=128

d=100
dr=0.5

Table 1. Final CNN, RNN and FC layer paramerters from our
best model

modified to make the speech fluent (Fig. 1b). The goal is
to reduce the amount of long, unnatural pauses that hurt the
fluency of the speech. It is also required to keep the pace
of the speech intact. Too much reduction of silences makes

the speech unnatural and broken. We take the fluent silence
times (i.e., suggested by our silence classifier) and obtain a
histogram. We experimentally found that taking the median
of the histogram bins as the optimal amount of silence works
quite well. In this way, the distribution of the silence along the
speech progression confines to a measure and speaker sounds
more fluent in the modified speech.

4. RESULTS & ANALYSIS

4.1. Experimental Settings

4.1.1. Datasets

The experiments are performed on Switchboard [23], Au-
tomanner [15] and our dataset of public speaker recording. To
train the CRNN we use the segments from the Switchboard.
The CRNN test results are reported on held-out data from
Switchboard-I. Silence classification results are reported on
TIMIT [19], Switchboard, and Automanner held-out dataset.
All the fluency metrics are evaluated on our dataset, contain-
ing recordings of 20 non-native speakers of English. The
speakers were asked to talk on a specific topic for 50-60
seconds.

4.1.2. Parameter settings

We experimented with different configurations of the CNN
and RNN parameters and different features.

Types of features: The mfcc (40× t) and log mel (128× t)
features are used for filler segmentation. For the silence clas-
sification mfcc features are used. All features are extracted in
30ms frames with 15ms overlap.

RNN & CRNN parameters: In experiments with the CNN
and CRNN, convolutional (conv) layers are used with com-
bination of max pooling and average pooling. At each layer,
ReLU activation is used. The RNN we use consists Gated
Recurrent Units (GRU) with no intermediate dropouts (dr).
The network is trained in an end-to-end fashion using Ada-
Grad algorithm for 200 epochs. The learning rate was set to
0.001. The regularization constant (λ) was set to 0.01. The
best model parameters are given in table 1.
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Metrics→ SR ↑ AR ↑ PTR ↑ MLR ↑ MLP ↓ FPM ↓
Original 191.456 198.155 66.717 0.420 0.789 4.739

Ours 206.465 208.437 77.151 0.495 0.422 1.813
Ours+ASR 206.710 208.770 76.974 0.504 0.438 1.608

Table 2. The fluency metrics before and after processing the
speeches. ↑ means higher and ↓ denotes lower is better.

Silence classification parameters: Max length of the se-
quences were set to 128. Final parameters of our best classi-
fier (XGBoost) are- depth=3, lr=0.1 and estimators=100.

Features Precision Recall F1

mfcc 0.9482 0.9610 0.9534
log mel 0.9495 0.9629 0.9550

Table 3. Performance of the CRNN with different features.

Method Precision Recall F1

ASR 0.9774 0.9792 0.9775
CRNN 0.9495 0.9629 0.9550

Table 4. Performance of filler word segmentation compared
to an automatic speech recognizer.

4.1.3. Evaluation Metrics

To evaluate the filler word segmentation we use the F1 score
calculated at frame level (30ms) taking fillers as the posi-
tive class. The silence classification is evaluated using the
F1 score w.r.t. the disfluent silence class.

To evaluate the quality of the augmented speech from our
system, we use six metrics defined in [4]. These are- Speech
rate (SR), Articulation rate (AR), Phonation-time ratio (PTR),
Mean length of runs (MLR), Mean length of pauses (MLP)
and Filled pauses per min. (FPM).

4.2. Filler Word Segmentation

The filler word segmentation evaluation results are given in
table 3 and 4. In Table 3 we report the comparative perfor-
mance of the CRNN using different features. To understand
more about the credibility of the CRNN, in table 4 we show
the results compared to an automatic speech recognizer avail-
able with Kaldi (ASpIRE Chain Model4). Considering the
simplicity of our network, it performs pretty close to the ASR
in terms of F1 score. All results are evaluated on a subset of
Switchboard-I dataset.

Method→ SVM LogReg XGBoost

F1 0.9055 0.9200 0.9207

Table 5. Silence classification performance on TIMIT,
SwitchBoard and Automanner

4https://github.com/kaldi-asr/kaldi/tree/master/egs/aspire

The only drawback that we have observed while compar-
ing our method and ASR is that, sometimes our classifier de-
tects segments that sounds similar with ’uh’ or ’um’.

4.3. Disfluent Silence Classification

For this task we experimented with SVM, Logistic Regression
(LogReg) and XGBoost. The results are summarized in table
5. We used 10-fold cross validation to report our results.

4.4. Disfluency Repair

To compare the fluency of the synthesized and the original
speech, mean of each metric (Section 4.1.3) across all the
samples are reported in table 2. Our method+ASR gives
slightly better result in most cases. But, the metrics are al-
most same proving the credibility of our disfluency detection
method. Apart from the numbers, for qualitative understand-
ing, some processed samples are available here.

5. FUTURE WORK

To the extent of the types of disfluencies produced in a speech,
this work is a small step towards a bigger goal. Along with
the pitfalls of our method following could be the future direc-
tions of this work- 1) Devising techniques to segment other
kinds of common disfluencies (repetition, discourse markers,
corrections) and speech impairments (stuttering); 2) Creating
a dynamic and online repair scheme, by generating necessary
(disfluent) portions of speech, instead of replacing.

6. CONCLUSION

In this work, we interpret disfluency detection from speak-
ers’ perspective thus going beyond just helping intelligent
systems. We introduce an additional component of repair-
ing the disfluencies. Consequently, we tried to work solely
on the acoustic domain, diminishing a need for a complex
system like an ASR, before performing disfluency detection.
With the results of our detection and repair scheme, we show
improved fluency in speakers’ dialogues, given a less-fluent
speech. To the best of our knowledge, this is the first work
related to disfluency repair for the sake of users’ and can be
further extended to assist users with speech impairments and
other general disfluencies.
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