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ABSTRACT 

 

This paper proposes a linear prediction-based part-defined 

auto-encoder (PAE) network to enhance speech signal. The 

PAE is a defined decoder or a defined encoder network, based 

on efficient learning algorithm or classical model. In this 

paper, the PAE utilizes AR-Wiener filter as decoder part, and 

the AR-Wiener filter is modified as a linear prediction (LP) 

model by incorporating the modified factor from residual 

signal. The parameters of line spectral frequency (LSF) of 

speech and noise and the Wiener filtering mask are utilized 

for training targets. Finally, the proposed the LP-based PAE 

is compared with the baseline method, namely the Wiener 

filtering mask-based DNN. The PESQ and STOI results of 

the LP-based PAE are better than baseline method at lower 

signal noise ratio (SNR) levels. 

 

Index Terms— Part-defined auto-encoder, speech 

enhancement, DNN, linear prediction, residual signal 

 

1. INTRODUCTION  

 

Single-channel speech enhancement, aiming at improving 

speech quality and reduce noise, is an essential part of speech 

processing and usually used for pre-processing of robust 

speech recognition [1], hearing aids [2] and robust speech 

coding [3]. In recent years, with the growing needs of speech 

processing, single-channel speech enhancement has been 

payed more and more attention. 

Speech enhancement algorithms have been developed 

over several decades. In 1979, Boll proposed Spectral 

subtraction [4] algorithm that is used to estimate short-time-

frequency spectrum of speech by removing noise spectrum. 

In 1984, Ephraim and Malah proposed the MMSE-based 

spectral amplitude estimators [5, 6] to improve the signal 

noise ratio (SNR) and ensure the quality of speech. However, 

these unsupervised speech enhancement approaches are not 

able to reduce non-stationary noise efficiently. 

The supervised algorithm is an efficient way to process 

non-stationary noise. It learns some priori information from 

the training data and use these priori information to improve 

intelligibility and quality of noisy speech. As one of the 

supervised algorithm, Non-negative Matrix Factorization 

(NMF) [7] assumes that speech and noise are independent. 

By separating speech and noise components in terms of 

matrix, the NMF-Wiener filter can be constructed to estimate 

clean speech spectrum. Deep neural network (DNN) is one of 

the most progressively supervised approaches for speech 

enhancement. DNN can predict some features of clean speech, 

such as log-power spectra (LPS) [8], the Wiener filter 

parameters [9], and Mel-Frequency Cepstral Coefficient 

(MFCC) [10]. One of the successful applications of the DNN 

in speech signal processing is the generative adversarial 

network (GAN) [11]. It employs a discriminator in network 

to assimilate true data. Another one is Auto-encoder (AE) 

[12], which gives a clear coding strategy for feature space, 

that is, the network is comprised of encoder and decoder. The 

denoising auto-encoder (DAE) network given in [13] is also 

an example of the AE aiming to reduce noise. However, the 

network layer selection of the AE is so general that it is 

difficult to approach the particular model, such as a speech 

model. 

The NMF-styled reconstruction that uses the NMF to 

learn basic spectral patterns and build the NMF-layer to drive 

the Wiener filter is used in DNN [14]. These spectral patterns 

reflect the physical or perceptual properties of speech. 

Another classical speech model is the vocal tract model [15]. 

Auto-regressive (AR) model, as a simplified vocal tract 

model, was used in well-known codebook-driven speech 

enhancement [16]. Then, the DNN-based and codebook-

driven algorithm [17] was proposed to reduce computation 

complexity. However, this AR model-based algorithm does 

not consider the influence of linear residual and use iteration 

approach to estimate gains of AR parameters. This resulted 

in some errors for constructing the Wiener filter parameters.  

These works showed the combination of the DNN and 

other valid models as an organic whole might be a more 

advisable strategy in speech signal processing. Follow this 

line of thought, a new network is proposed that combines the 

AE with the AR-Wiener model for speech enhancement. This 

new network is defined as the part-defined auto-encoder 

(PAE), in which the encoder or decoder of the AE is set as a 

fixed or slowly changed network based on classical model or 

training method. The linear prediction (LP) model-based 

PAE is used to predict the AR-Wiener filter parameters, in 

which the line spectral frequency (LSF) parameters, AR gains 
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are used for middle feature spaces target, and Wiener mask 

are used for final target. Furthermore, a self-defined the LP 

layer that can transfer the LP parameters into magnitude 

spectrum is used to drive the AR-Wiener filter for obtaining 

magnitude spectrum of clean speech. Based on the feature of 

spectral envelope, there is a definite range to select activation 

function and network layers. For modifying the accuracy of 

the AR-Wiener filter, the modification factor is incorporated 

by Recurrent Neural Network (RNN) [18]. 

The paper is organized as follows: The PAE with linear 

prediction is described in section 2. System evaluation and 

comparison are given in section 3. The conclusions are 

summarized in section 4.  

 

2. PAE WITH LINEAR PREDICTION 

 

A block diagram of the proposed speech enhancement 

framework is illustrated in Figure 1. In the training stage, the 

ideal Wiener filtering mask, LSF parameters of speech and 

noise are extracted as the training target for learning the PAE. 

In test stage, the PAE is used to predict the Wiener filtering 

mask and drive the Wiener filter. The structure of the PAE is 

a vital part in this section. The PAE with the AR-Wiener 

model is described in 2.1. Then, the AR-Wiener model is 

modified by analyzing vocal tract model in 2.2. Finally, the 

PAE with the modified AR-Wiener is given in 2.3. 

 

2.1. PAE based on the AR-Wiener filter 

 

The PAE, the vital part in figure 1, is illustrated in figure 2. 

As the essential part of the proposed model, the decoder 

network is based on the AR-Wiener model [16], which is: 
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where g is the AR gains. 
2

1 ( )A k  is spectral envelope of 

signal, k is frequency index, and the superscript (s) and (n) 

respectively are speech and noise. Based on Eq. (1), the AR-

Wiener-based PAE is used to decode the AR parameters. For 

the PAE illustrated in Figure 2 with inverse analysis, from 

bottom to the top of decoder network, the layer that transfers 

the gain and LP parameter into magnitude spectrum is 

defined as the LP-layer. Considering the LSF parameters are 

more stable and according to the method proposed by Kang 

et al. [19], the layer that transfers the layer with LSF 

parameters into the layer with the LP parameters is defined as 

the LSF-LP-layer. The coding spaces that consist of gain and 

the LSF of speech and noise are the output of encoder 

network and the input of decoder network, as shown in the 

blocks with the thin-dashed line in figure 2.  

The loss function Er of this paper consist of three parts: 

target error between the estimated value and mask value of 

the Wiener filtering, LSF error of speech signal and LSF error 

of noise signal, thus Er can be expressed as follows:  
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where  , ,l t

l t



WM Y W b and lWM  respectively denote the lth 

estimated and target frequency bins of the Wiener filtering 

mask.  , ,l t

l t



LSF Y W b  and 
lLSF  respectively denote the lth 

estimated and target LSF parameters, the superscript (s) and 

(n) respectively refer to speech and noise. The l is the index 

Wiener Mask

SpeechNoise Corrupted

Noisy 

speech

LPS extraction

LSF 

extraction

LSF 

extraction

Ideal 

Wiener 

mask

Noisy speech
LPS extraction

Wiener 

Filter

Enhanced 

Speech

Training stage

Test stage

 PAE 

network

 
Fig. 1. The block diagram of the proposed PAE 
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Fig. 2. The proposed PAE (the small block with the dashed line 

is data space, and the block with solid line is network layer) 
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of frame and l t

l t



Y is log-spectral feature vectors of noisy that 

cover t previous frames, 1 current frame and t future frames. 

W and b are weight and bias parameters to be learned. K is 

the number of sample point, and N is the number of LSF 

parameters in a frame. 

Once the decoder of the PAE is defined, the encoder 

network layer is selected based on analysis of the coding 

spaces. Since the LSF parameter is an equivalent expression 

of mathematics with the LP coefficients used for spectral 

envelope construction, the convolution neural network (CNN) 

can be used to learn LSF parameters and AR gains of speech 

and noise through the LPS of noisy speech. Here, two 

convolutional layers [20] are used to extract LPS, and then 

the max-pooling activation function [21] is utilized to find 

peaks of the LPS. Next, the fully connected (FC) layers are 

selected to linearly map out LSF parameters of speech and 

noise from the LPS of noisy. Finally, the Maxout method [22] 

is employed to find the AR gains of speech and noise.  

 

2.2. Modified AR-Wiener with the residual 

 

The vocal tract model of speech signal is a kind of AR model 

[15], so the linear prediction residual in time domain can be 

illustrated by an infinite impulse response (IIR) filter, 

        ( ) IIRg r n x n n n h p         (3) 

where r(n) is normalized residual, δ is unit impulse function, 

hIIR(p) is the p order IIR filter, g is the gain of the AR model, 

and n is the index of discrete time.  

The expression of frequency domain for Eq. (3) is as 

follows: 
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where HIIR(k) is the discrete Fourier transform of the IIR filter, 

1-HIIR(k) is regarded as a short-term prediction (STP) filter, 

R(k) is residual spectrum. It is critical to incorporat residual 

into the AR-Wiener. Substituting Eq.(4) into Eq.(1), the 

modified AR-Wiener filter is given by  
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The Eq. (5) is called the LP-based AR-Wiener filter and 

can be expressed as follows: 
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where the Hr-WF(k) is a modification factor that that will be 

estimated from residual signal by the RNN. HAR-WF(k) is 

defined in Eq. (1). Eq. (6) indicates the Wiener filtering mask 

influenced by residual signal. The Wiener filtering mask is 

also influenced by the correlation of spectral envelopes of 

speech and noise.  

 

3. SYSTEM EVALUATION AND COMPARISON 

 

3.1. Data set and PAE structure 

 

All experiments were conducted on the TIMIT corpus [23]. 

Speech signal was down-sampled to 8 kHz. The Babble, F16, 

Factory, Office and Street noises were chosen from NOISEX-

92 noise database [24], in which the Babble, F16 and Factory 

noises were used both in training and test part, and Factory 

and Office noises were used for generalization test. 40 

minutes utterances were added with the aforementioned three 

training noises at -5 dB, 0 dB, 5 dB and 10 dB SNR levels. 

Another 201 randomly selected utterances from the TIMIT 

test set were used for five noises at four same SNR levels. 

The Wiener filtering mask from the DNN-based algorithm [9] 

was used as reference mask to evaluate performance of the 

proposed method. For comparison, this reference is named as 

the W-DNN. The proposed AR-Wiener filter-based PAE 

algorithm is named as the Pro. A, and the modified AR-

Wiener filter-based algorithm is named as the Pro. B. 

As for signal analysis, the corresponding frame length 

was set to 256 samples with an overlap of 128 samples. The 

129-dimension LPS was used as input in the training and test 

stages for three methods. The LSF parameters of speech and 

noise and the Wiener filtering mask were extracted from 

parallel speech corpus and noise database.  

The details of the PAE were illustrated in table 1. The 

input shape of the CNN was shown in the 2D spaces in terms 

of time and frequency. The input shape of the RNN was 

Table 1. The detailed structure of the PAE  

Summary of the PAE   

Input: 11 frames noisy speech with 129 frequency bins 

Layer 

index 
Type of layer 

Number 

of filter 

Output 

shape 

(nodes) 

Previous 

output 

layer 

CNN structure 

1 
Conv2D(2,2) 

Maxp2D(2,2) 
6 

(10,128) 

(5,64) 
input 

2 
Conv2D(2,2) 

Maxp2D(2,2) 
16 

(4,63) 

(2,31) 
1 

3 FC  2048  2 

4 FC   2048  3 

5 FC   12 
4 (first 

1500) 

6 FC   12 
4 (last 

1500) 

7 
FC 

Maxout 
 

20 

1 

3 (first 

100) 

8 
FC 

Maxout 
 

20 

1 

3 (last 

100) 

Output of CNN: LSFs and gains of speech and noise 

RNN structure 

9 RU(2FC)  1419 input 

10 FC  2048 9 

11 FC  129 9 

Output of RNN: Modified factors in 129 frequency bins 
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shown in 1D spaces in terms of requency. The Conv2d(2,2) 

denotes a 2D convolutional layer with the filter size of 2×2, 

and the Maxp2D(2,2) denotes the down-sampling by 2 both 

in time and frequency. The previous layer 4 (first 1500) 

means that the layer is connected to the first 1500 nodes in 

the output of the 4rd layer. The resdual unit (RU) consisted of 

two FC layers without bias. The rectified linear unit (Relu) 

[25] was used for activation function of the 1st, 2nd, 3rd, 4th and 

10th layers, and the sigmoid function with weight π was used 

for activation function of the 5th and 6th layers. The activation 

function was not used for the 7th, 8th and 11th layers. The 

dropout layers with 0.2 rate were used behind the 3rd, 4th and 

10th layer. The W-DNN has three hidden layers with 2048 

points and the Relu activation layer with 0.2 rate dropout. 

Three speech enhancement systems were implemented by 

PyTorch, all networks were trained by Adam optimizer [26], 

and the initial learning rate was set to 0.0001. Our evaluation 

measures for speech enhancement are the Perceptual 

Evaluation of Speech Quality (PESQ) [27] and the short-time 

objective intelligibility (STOI) [28]. 

 

3.2. Results 

 

Table 2 shows the PESQ results among Noisy, W-DNN, Pro. 

A and Pro. B at different SNR levels for five noise types. 

From Table 2, we can see that the PESQ results of all methods 

are better than the Noisy. However, the PESQ result of Pro. 

A is poorer than the W-DNN. For this case, the reason may 

be that the residual signal is not considered in Pro. A so that 

lots of structures of voiced speech is broken. Since the 

modified factor of the AR-Wiener from residual is 

incorporated, the PESQ results of Pro. B are better than W-

DNN in most cases, especially in lower input SNR. 

Since the PESQ results of the Pro. A are not good, the 

performance of the Pro. A is not shown in table 3 and Fig. 3. 

In table 3, the average PESQ and STOI results are showed 

among five abovementioned noise types. The Pro. B is better 

than W-DNN in many cases, and particularly at 0dB and -

5dB. The spectrograms of an utterance are displayed in Fig. 

3. The labeled part shows that the unvoiced speech signal is 

estimated more accurate based on the Pro. B. This 

phenomenon may be derived from the results of incorporating 

the modified AR-Wiener factor and may lead to better PESQ 

and STOI results at lower SNR levels. 

 

4. CONCLUSIONS 

 

In this paper, the AR-Wiener filter to obtain an AR-Wiener 

based PAE replaced the decoder in the AE. Then, the 

modified factor of the AR-Wiener filter was incorporated so 

that speech enhancement method derived from the LP-based 

PAE was given. The test results showed that the proposed 

method got a satisfactory result compared with the reference, 

especially at the low SNR levels. In the future work, the 

enhanced model of residual can be considered, and some 

classical algorithms can be combined with the PAE. 
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Table 2. PESQ results 

SNR(dB) Noise Type Noisy W-DNN Pro A Pro B 

-5 

Babble 1.719 1.941 1.793 1.986 

F16 1.595 2.125 2.037 2.139 

Factory 1.761 2.298 2.207 2.333 

Office 1.860 2.067 1.975 2.078 

Street 1.990 2.570 2.502 2.614 

Average 1.785 2.200 2.103 2.230 

0 

Babble 1.931 2.338 2.180 2.377 

F16 1.832 2.520 2.401 2.523 

Factory 2.073 2.699 2.577 2.734 

Office 2.175 2.489 2.403 2.511 

Street 2.320 2.946 2.868 2.983 

Average 2.066 2.598 2.486 2.625 

5 

Babble 2.221 2.733 2.567 2.749 

F16 2.136 2.898 2.771 2.908 

Factory 2.391 3.064 2.932 3.086 

Office 2.492 2.889 2.811 2.906 

Street 2.650 3.287 3.198 3.297 

Average 2.378 2.974 2.856 2.989 

10 

Babble 2.518 3.098 2.930 3.098 

F16 2.444 3.225 3.105 3.239 

Factory 2.705 3.374 3.244 3.37 

Office 2.803 3.256 3.171 3.253 

Street 2.973 3.577 3.477 3.565 

Average 2.689 3.306 3.185 3.305 

 

Table 3. The average results of the PESQ, STOI  

SNR 

Noisy W-DNN Pro. B 

PESQ STOI% PESQ STOI % PESQ STOI % 

-5 1.785 57.14 2.200 68.39 2.230 69.04 

0 2.066 68.24 2.598 78.67 2.625 78.80 

5 2.378 78.01 2.974 85.77 2.989 85.56 

10 2.689 85.70 3.306 90.45 3.305 90.06 

Avg. 2.230 72.27 2.770 80.82 2.787 80.87 

 

 
Fig. 3. Spectrogram comparison. A. Speech corrupted by 

Babble at 0 dB; B. Clean speech; C. Enhanced speech by the 

W-DNN; D. Enhanced speech by Pro. B 

 

A B

C D.
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