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ABSTRACT

Speech separation can be treated as a mask estimation prob-
lem where supervised learning is employed to construct the
mapping from acoustic features to a mask. Interference can be
reduced by applying the estimated mask on a time-frequency
(T-F) representation of noisy speech, resulting in improved
speech intelligibility. Most of existing learning networks for
speech separation aim to minimize the Mean Square Error
(MSE) over the training set, where the loss from each T-F
representation is equally weighted. In this paper, we pro-
posed a spectral-change-aware loss function, where loss from
the T-F units with large spectral changes over time were as-
signed higher weights compared to the T-F units with minor
spectral changes. Such spectral-change-aware loss function
was evaluated on speech separation performance in terms of
mask estimation accuracy, short-time objective intelligibility
(STOI) and SNR gain of unvoiced segments. The results in-
dicated that the proposed loss function could further improve
the speech intelligibility and increase SNR gain of unvoiced
segments even in the cost of increased error rate of estimated
mask.

Index Terms— Speech separation, loss function, spectral
change, speech intelligibility

1. INTRODUCTION

Approximately 5% of the population in the world is suffer-
ing from the hearing loss, further along with reduced speech
intelligibility in background noise [1, 2]. Extensive efforts
have been made to improve speech intelligibility for the hear-
ing impaired (HI) over the past several decades. Recently,
methods based on supervised speech separation showed sig-
nificant performance on speech enhancement, where an ideal
time-frequency (T-F) mask is used as the computational ob-
jective [3]. A trained classifier, typically, a deep neural net-
work (DNN) is used to estimate the ideal T-F mask, which
indicates whether, or to what extent, each T-F unit is domi-
nant by the target speech. A binary decision leads to the ideal
binary mask (IBM) while a ratio decision leads to the ideal
ratio mask (IRM) [4]. DNN-based IBM and IRM separation

have been shown to improve speech intelligibility in noise for
both normal hearing and HI listeners [5].

Most of existing learning networks for speech separation
aim to minimize the Mean Square Error (MSE) over the train-
ing set, and the loss from each T-F representation is equally
weighted. However, studies of speech perception reveal that
auditory system is especially sensitive to abrupt changes in
stimuli, and listeners may utilize the temporal changes to en-
hance perception of auditory objects [6, 7, 8]. In addition,
perceptually-motivated enhancement approaches have manip-
ulated “landmark” regions of the signal that are known to con-
tain a high concentration of acoustic cues to phonetic iden-
tity, resulting in improved speech recognition in background
noise [9, 10]. These landmark regions can be inherently tran-
sient and of low energy, e.g. the perceptually-important for-
mant transitions following plosive release, hence they could
be easily masked by background noise and difficult to be re-
trieved from noisy mixtures, especially when the noise level
is high. Recently, a spectral-change evaluation (SCE) algo-
rithm which aims to extract and further enhance the effec-
tive spectral changes from noisy mixtures has been demon-
strated to improve speech intelligibility in noise for HI lis-
teners [11, 12, 13]. Due to the importance of dynamic cues
in the signal, separation networks could be adjusted to put
more effort into training regions containing dynamic changes,
in order to increase separation accuracy of these “landmark”
regions and further to improve speech intelligibility. One
straightforward method is to add some constrains to common
loss functions to control the training effort of networks be-
tween dynamic regions and other non-dynamic regions.

In this work, the basic idea was to make DNN-based IBM
or IRM system work like human auditory system, to be sen-
sitive to those regions with dynamics and transitions. This
idea was addressed by introducing a spectral-change-aware
loss function, where loss from the T-F units with large spec-
tral changes over time were assigned higher weights com-
pared to regions with few changes. The previously proposed
SCE was applied to each T-F unit to effectively extract spec-
tral changes from the premixed clean speech. The extracted
spectral changes were used as the weights assigned to the loss
of corresponding T-F units. The effect of the proposed loss
function was evaluated in terms of mask estimation accuracy,
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short-time objective intelligibility (STOI) and SNR gain of
unvoiced segments.

2. SPECTRAL-CHANGE-AWARE LOSS FUNCTION

2.1. Spectral-change-aware loss function

The weight assigned to T-F units was indicated by the spectral
changes within each T-F unit, which was applied to the com-
monly used MSE as a constraint during the DNN training,
constructing the spectral-change-aware loss function. The
spectral changes of each T-F unit were extracted by a spectral
change evaluation method, which was used in [11].

The input mixture sampled at 16 kHz was first passed
through a 64-channel gammatone filterbank. The output in
each channel was then divided into 20-ms frames with 10-
ms overlapping between consecutive frames. The basic spec-
tral change over time was first derived by calculating the dif-
ference of the T-F representations across every two adjacent
frames.

A spectral change function (SCF) was then derived by the
convolution of the basic spectral change with a difference-of-
Gaussians (DoG) function, in order to emphasize the contrast
between spectral peaks and valleys as well as to remove minor
irregularities in the spectrum.

To take the influence of preceding frames into account, a
Gain function, Gain(t, f) for a certain frame t and sub-band
f, was defined by a weighted average of the SCF over several
preceding frames with a weight that progressively declined
for frames that were earlier in time than the current frame.
Then, the Gain function Gain(t, f) was scaled by a factor to
produce a controllable spectral change weight SCW (t, f).

Therefore, the proposed loss function was defined as,

loss =
1

2T

∑
t

∑
f

‖yt,f − ỹt,f‖2 +

1

2T

∑
t

∑
f

‖SCWt,f · (yt,f − ỹt,f )‖2
(1)

where yt,f denoted ground truth IRM at a specific T-F unit;
ỹt,f denoted the corresponding estimated IRM; SCWt,f de-
noted the weight assigned to this T-F unit, which was derived
by SCE from premixed clean speech; T was the total num-
ber of frames in the training data. Such loss function was
addressed based on the idea that the training network was
expected to give more weight to T-F units with larger spec-
tral changes, in order to increase separation accuracy of these
dynamic regions and further contribute to the speech intelli-
gibility of the final synthetic speech. Here, the weight was
indicated by the spectral changes within each T-F unit.

2.2. Analysis of the weight

The weight calculated from the spectral change evaluation
(SCE) should exactly indicate the spectral changes in each

T-F unit. Hence, the spectral change weight SCWt,f was
plotted here to visually examine whether the SCE can effec-
tively extract the spectral changes over time as a guidance to
facilitate IRM estimation.

Fig. 1 showed the grayscale images of cochleagram of
the premixed clean speech, the spectral changes calculated
directly by SCE and the final weight used to adjust the loss
of each T-F unit. Panel (b) showed the greyscale image of the
spectral changes calculated by SCE which indeed captured
the dynamics at the onsets of syllables and even the formant
transitions with relatively low intensity. Regions with obvious
spectral changes over time were marked by rectangle boxes.
To highlight the regions with obvious spectral changes, the
result of panel (b) was further modified by a scaled sigmoid
function in order to make the values of T-F units with big
spectral changes larger while the values of T-F units with mi-
nor spectral changes smaller. Panel (c) showed the modified
spectral changes which were used as the final weight to pro-
duce the proposed loss function. Compared with panel (b),
the modified one increased the salience of dynamics-bearing
regions which were inherently transient and of low energy,
such as the perceptually-important formant transitions and the
energy-concentrated frequency bands of consonants.

Fig. 1. The upper panel (a) showed the cochleagram of the
premixed clean speech. The middle panel (b) and the bottom
panel (c) showed the output of SCE and the final weight used
to produce the proposed loss function, respectively.

3. SPEECH SEPARATION SYSTEM

The IRM was employed as the training target for supervised
speech separation [14, 15]. The IRM was defined as,

IRM (t, f) =

√
S (t, f)

S (t, f) +N (t, f)
(2)
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where S (t, f) and N (t, f) denoted premixed speech and
noise energy within a T-F unit at time t and frequency f,
respectively. The IRM was computed from the 64-channel
cochleagrams of the premixed speech and noise with 20 ms
frame length and 10 ms frame shift. The separation system
was the same as that used in Chen et al., see [16] for details.
Acoustic features for each T-F unit were extracted from a
mixture and were feed into a DNN to estimate the IRM of
each T-F unit. Two typical acoustic features, multi-resolution
cochleagram (MRCG) and gammatone feature (GF) were
used, which showed promising advantages for DNN-based
speech separation when comparing with other features [16].
The DNN had 64 units for GF and 256 units for MRCG in
the input layer, 1024 sigmoidal units in each of the 3 hidden
layers and 64 sigmoidal units in the output layer. Stochas-
tic gradient descent with a mini-batch size of 256 and the
proposed loss function was employed to train the DNN with
original MSE loss function as a comparison. As we were
mainly concerned with the relative performance for differ-
ent loss functions, the DNN was chosen as the classifier to
simplify and speed up training.

4. EXPERIMENTS

4.1. Experiment setting

The spectral-change-aware loss function was evaluated on the
IEEE corpus recorded by a male speaker [17]. There are 72
phonetically balanced lists in the corpus, each with 10 sen-
tences. Sentences from the first 48 lists were used to gen-
erate training data, 50 sentences of them set as the valida-
tion data. The proposed loss function was tested on sentences
from list 49-53. The comparison condition, original MSE loss
was tested on sentences from list 53-57.

Six types of nonstationary noise from the NOISEX corpus
were used in this work [18]. The noise types included fac-
tory floor noise (Factory), speech babble (Babble), jet cockpit
noise (Cockpit), destroyer engine room noise (Engine), mil-
itary vehicle noise (Vehicle), and tank noise (Tank). Each
mixture was created from one IEEE sentence and one noise
type at -5 dB SNR where the recognition rate of even normal-
hearing listeners was less than 50% [19]. Each noise was di-
vided into two parts: the first half was used for training and
validation sets and the second half was used for testing.

Mask estimation accuracy, short-time objective intelligi-
bility (STOI) score and SNR gain of unvoiced segments were
used as the measurements for evaluating the performance of
the current method. Mask estimation accuracy was repre-
sented by the mean square error (mse) rate between the esti-
mated IRM and the ground truth. STOI has been used widely
as an objective evaluation of speech intelligibility, which is
positively correlated with speech recognition scores of human
listeners [20]. In addition, SNR gain corresponds to the in-
crease of SNR values for separated speech compared compar-

ing to the input mixtures, specifically for unvoiced segments.

4.2. Results

For the 50 test sentences, mask estimation accuracy, STOI
scores and SNR gain for original MSE and proposed loss
function were shown in Table 1-3, respectively.

The Overall mse rates were calculated for all T-F units
while the TFunitsc mse rates were calculated only for the
T-F units with spectral changes (weight>0), both of which
were calculated separately for original MSE and proposed
loss function, with GF and MRCG as the input features, re-
spectively. Compared with original MSE loss function, error
rates for TFunitsc decreased for both GF and MRCG at all
noise types when the proposed loss function was used, indi-
cating that the estimated IRM for the T-F units weighted by
the spectral changes was actually more accurate than before.
It was noteworthy that the benefit of proposed loss function
was especially significant for GF at the babble noise. How-
ever, error rates for Overall were increased for GF feature
at some noise types when using the proposed loss function,
such as the factory, babble and engine noises, which might
be brought from the less accuracy of estimated IRM for other
unweighted (weight=0) T-F units. The Overall result for the
proposed loss function were decreased for MRCG at all noise
types as expectations. Therefore, the weight should be ap-
propriately and precisely determined to achieve a balance be-
tween the estimation accuracy of weighted T-F units and other
unweighted T-F units.

Table 2 showed that the performance of speech separa-
tion using the proposed loss function always revealed higher
STOI scores for both GF and MRCG at all noise types. Pro-
posed loss function still performed well for GF at the factory,
babble and engine noise types where even at the cost of in-
creased Overall mse rates (see Table 1). However, the benefit
for the proposed loss function was small, 0.57% for GF and
0.46% for MRCG on average. Though the masks of T-F units
with spectral changes were estimated more accurately, their
low percentage in total units resulted in few improvement of
sentence STOI scores.

In addition, the performance of separation for unvoiced
segments was examined. As a subset of consonants, unvoiced
speech consists of unvoiced fricatives, stops and affricates,
which show obvious dynamics in spectrum over time and is
more susceptible to background noise due to relatively weak
energy [21, 22]. Hence, unvoiced speech should be domi-
nant by the T-F units with large spectral changes here. Table
3 showed the SNR gains of unvoiced segments for original
MSE and proposed loss function respectively. Compared with
original MSE, proposed loss function always performed bet-
ter on unvoiced segments for both GF and MRCG at all noise
types. The average benefit of the proposed loss function was
0.8 dB for GF and 0.71 dB for MRCG for SNR gain.
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Table 1. Mean square error (in %) calculated for overall T-F units (Overall) and the T-F units with spectral changes (TFunitsc)
separately for six noise types at -5 dB. Boldface indicated best result.

Feature Loss function Portion Factory Babble Engine Cockpit Vehicle Tank Average

GF
MSE Overall 2.83 4.93 1.46 1.51 1.45 2.09 2.38

TFunitsc 1.87 6.68 1.15 1.68 1.35 1.69 2.40

Proposed Overall 2.87 5.04 1.48 1.50 1.44 2.09 2.40
TFunitsc 1.73 4.53 1.00 1.27 1.25 1.54 1.89

MRCG
MSE Overall 2.53 4.79 1.12 1.14 1.12 1.61 2.05

TFunitsc 3.20 6.89 1.18 1.34 1.70 1.84 2.69

Proposed Overall 2.47 4.78 1.11 1.14 1.11 1.60 2.04
TFunitsc 2.47 6.45 1.04 0.77 1.61 1.65 2.33

Table 2. STOI scores (in %) for six noise types at -5 dB. Boldface indicated best result.
Feature Loss function Factory Babble Engine Cockpit Vehicle Tank Average

GF MSE 65.68 65.74 72.22 70.50 78.14 71.92 70.70
Proposed 66.29 66.27 72.86 71.14 78.73 72.33 71.27

MRCG MSE 67.03 64.96 74.11 73.15 79.84 73.68 72.13
Proposed 67.57 65.38 74.64 73.64 80.31 73.98 72.59

Table 3. SNR gain (in dB) of unvoiced segments for six noise types at -5 dB. Boldface indicated best result.
Feature Loss function Factory Babble Engine Cockpit Vehicle Tank Average

GF MSE 15.23 8.59 16.91 16.57 17.24 16.72 15.21
Proposed 16.01 16.01 17.34 17.43 18.07 17.46 16.01

MRCG MSE 15.94 8.97 17.03 16.79 17.96 16.83 15.59
Proposed 16.67 9.68 17.69 17.69 18.57 17.58 16.30

5. DISCUSSION

In this study, we proposed a spectral-change-aware loss func-
tion during the training of DNN-based speech separation in
order to improve speech intelligibility. The initial results sug-
gested this method could improve the SNR gain for unvoiced
segments and the STOI scores. It should be noticed that en-
hancement of unvoiced segments could achieve more benefit
for HI listeners than normal hearing listeners [23], hence, it
could be expected that the performance improvement could
be increased if subjective speech test is conducted for HI lis-
teners.

When the weights were assigned to T-F units, they were
derived by spectral change evaluation. In the panel (c) of Fig.
1, although some prominent dynamic features were captured
with the SCE processing, some “noise” still existed. It re-
mains unclear to what extent the SCE could be manipulated,
and how this manipulation could impact the final performance
of speech segregation. It is worthy to adjust the SCE pro-
cessing for assigning more accurate and effective weights in
future work.

The proposed loss function was an early attempt to real-
ize a discriminative training since it was just simply addressed
by adding a constraint to the original MSE loss function us-
ing the spectral changes evaluation. The experimental results

showed that the performance of speech separation could be
further improved by making training networks to put more ef-
forts into some important regions. Therefore, it is possible to
introduce attention mechanism for DNN, which has been ap-
plied a lot in many intelligent systems, e.g. image captioning
and machine translation [24], to simulate the human beings
perceptual property on the sensitivity of spectral changes.

6. CONCLUSION

In this study, we proposed a spectral-change-aware loss func-
tion in order to realize a discriminative training for DNN-
based speech separation. The experimental results showed
speech intelligibility could be improved in adverse back-
ground environments when using the proposed loss function
even at the cost of less accuracy of estimated IRM for some
conditions. In addition, the proposed loss function produced
a better separation performance on unvoiced segments.
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