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ABSTRACT 

 

The data driven speech enhancement approaches using 

regression-based deep neural network usually result in 

enormous number of model parameters, which increase the 

computational load and the difficulty of model training. In 

order to improve the model efficiency, we propose a densely 

connected network with time-frequency (T-F) dilated 

convolution for speech enhancement. The T-F dilated 

convolution block is designed to enlarge the receptive field 

and capture the contextual information in both temporal and 

frequency domains. Considering the computational 

efficiency, the 1-D convolution with the bottleneck structure 

is exploited in the T-F convolution block. Each T-F 

convolution block is then densely connected to ensure 

maximum information flow between layers and alleviate the 

vanishing gradient problem of the network. The 

experimental results reveal that the proposed scheme not 

only improves the computational efficiency significantly but 

also produces satisfactory enhancement performance 

comparing the competing methods. 

 

Index Terms— Dense connectivity, dilated convolution, 

speech enhancement 

 

1. INTRODUCTION 

 

Speech enhancement has attracted considerable attention for 

several decades in the speech signal processing community 

due to its importance in applications such as speech 

communication, digital hearing aids and robust automatic 

speech recognition systems [1]. Based on the assumption  on 

particular probabilistic models of speech and noise, 

statistical based methods including spectral subtraction [2], 

Wiener filtering [3], and minimum mean-square error of the 

spectra (MMSE) algorithms [4] have been proposed. 

However, for highly non-stationary noise scenarios, these 

statistical-based methods usually fail to build estimators and 

therefore introduce additional artifacts in the enhanced 

speech due to the unrealistic assumptions [1, 5].  

In the past few years, the data driven or supervised 

approaches using regression-based deep neural network 

(DNN) have been shown to provide a significant 

performance improvement over conventional statistical-

based methods [5-10]. Based on a definition of the learning 

targets, the data driven approaches are categorized as 

spectral mapping [6, 7] time-frequency (T–F) masking [11-

13] and multitask learning methods [10, 14].  Xu et al. 

introduced a mapping-based approach and DNN is used as 

the regression model to predict the clean speech log power 

spectrum (LPS) from the noisy LPS features [6]. In [12, 13], 

the masking-based approaches learn a mapping function 

from noisy speech features to a T–F mask and the estimated 

speech signal is obtained as the product of the noisy speech 

features and estimated T–F mask. The multitask learning 

approaches use a neural network to jointly estimate the 

primary target and other secondary features for speech 

enhancement, by which additional constraints not available 

in the direct prediction are imposed and the learning of the 

primary target can be potentially improved [10, 14]. Except 

the learning targets, the supervised speech enhancement 

methods also are investigated from the aspects of input 

feature and network structure. The time domain waveform 

enhancement frameworks based on generative adversarial 

networks (GANs) [15], fully convolutional neural network 

[16-18] and WaveNet [19, 20] have been introduced. The 

long short-term memory (LSTM) network [13, 21] was 

investigated to capture the temporal dependences of speech 

signal and significantly outperforms the DNN with feed-

forward structure. More recently, the more complex 

convolutional recurrent neural network (C-RNN) has been 

introduced for speech enhancement [5, 8].  

Although the data driven speech enhancement methods 

using regression-based DNN show clear performance 

advantage, the high model complexity and vanishing 

gradient problem are introduced. In this work, we propose a 

densely connected network with time-frequency dilated 

convolution for speech enhancement. The dense connectivity 

concatenates the convolution output of all preceding layers 

as inputs, which ensures maximum information flow 

between layers in the network and alleviates the vanishing 
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gradient problem. The time-frequency dilated convolutions 

with enlarged receptive field could capture the contextual 

information in both temporal and frequency domains. The 

introduced architecture is designed based on the fully 

convolutional framework and there is no recurrent layer used 

for temporal series modelling. The experimental results 

show that the proposed scheme improves the computational 

efficiency significantly and produces satisfactory 

enhancement performance comparing the DNN, LSTM and 

C-RNN baselines. 

 

2. DENSELY CONNECTED NETWORK WITH TIME-

FREQUENCY DILATED CONVOLUTION 

 

A densely connected convolutional architecture, illustrated 

in Fig. 1, is explored to capture the contextual information in 

time and frequency for speech enhancement. A shape of T×

F noisy spectra is fed into the network to estimate the 

corresponding clean speech spectra in the central frame, 

where T and F represents the input context frames and 

frequency channels, respectively. Due to the imbalance of T 

and F, the contextual information in frequency and time 

direction is aggregated separately. To improve the 

computational efficiency, the 1-D convolution is used 

instead the 2-D convolution.  

 

2.1. Dense block 

 

The input and the l-th layer output of the dense block is 

denoted as x0 and xl, respectively. The l-layer of the dense 

block receives the convolutional output of all preceding 

layers as the input 

 

0, 1 1([ , , ]),l l lHx x x x                          (1) 

 

where Hl(·) represents the non-linear transformation of the l-

th layer, [...]  denotes the concatenation of the convolutional 

output in the temporal direction, i.e. the concatenation of 

time channels. In [22], the transformation function Hl(·) is 

defined as the composite function of batch normalization 

(BN), followed by a rectifier non-linearity (ReLU) activation 

and a convolution layer. In our architecture, we design a T-F 

dilated convolutional block as the transformation function to 

capture the contextual information in both temporal and 

frequency domains. As shown in Fig. 1, there are six T-F 

dilated convolution blocks with a specific dilation rate each 

in one dense block. The l-th layer (T-F dilated convolution 

block) has k0+k×(l-1) input time channels and the function 

Hl(·) produces k time channels, where k0 is the number of 

time channels of the input x0 and the hyper-parameter k is 

referred to as the growth rate of the network. The growth 

rate for each dense block is set as a relatively small integer 

(k=16) to prevent the block growing too wide. The output of 

each T-F dilated convolution block should have the same 

number of frequency channels to ensure the concatenation of 

time channels.  

 

2.2. T-F dilated convolutional block  

 

The conventional convolutional neural networks (CNNs) do 

not capture the long-term temporal dependencies of speech 

signal due to the limited respective fields. One way to 

expand the respective fields is to increase the network depth, 

which typically decreases computational efficiency and 

results in vanishing gradients. The dilated convolution could 

expand the receptive fields while maintaining the network 

depth and the kernel size [23]. Fig. 2 illustrates the 
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Fig. 1: Overview of the proposed architecture for speech enhancement 
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Fig. 2: The structure of T-F dilated convolutional block. 
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introduced dilated T-F convolutional block, in which the 

frequency and time sub-convolution blocks are connected 

sequentially. The 1-D frequency-dilated convolution with 

kernel size 3 is applied in the frequency sub-convolution 

block to capture the contextual information along the 

frequency direction. To improve the computational 

efficiency, the convolution with kernel size 1 can be 

introduced as an additional bottleneck layer before the 

dilated-convolution to reduce the number of input time 

channels. For the time sub-convolution block, the 1-D time-

dilated convolution with kernel size 3 is exploited to capture 

the contextual information in temporal domain. An 

additional bottleneck layer with a fixed kernel size is 

introduced at the end the time-dilated convolution to make 

the output of each T-F convolutional block has a constant 

frequency channel. The self-normalizing neural networks 

with the scaled exponential linear unit (SELU) activation 

function allow the neuron activations converges to zero 

mean and unit variance automatically [24]. The network 

with SELUs activation results in notable better performance 

than that of the ReLU with BN. Hence, the SELU activation 

is exploited in the T-F convolution block instead of the 

ReLU with BN.  

 

2.3. Transition block 

 

With the number of connected layers increasing in dense 

block, the connected time channels are accumulated rapidly. 

To improve the model compactness, a transition block is 

inserted into two adjacent dense blocks to reduce the number 

of time channels. In our architecture, the transition block is a 

1-D convolutional layer across frequency dimension and the 

time channels of the dense block output are compressed to 

25% of their original value.  

 

2.4. Network configurations 

 

The 1-D frequency and time directional convolution layers 

are successively connected to construct an extension block 

to expand the number of time and frequency channels. The 

extension block enable the use of larger receptive field in the 

following dilated convolution structure. Once the extension 

block, dense block and transition block are stacked together, 

one convolutional layer with SELU activation is used to 

perform cross-channel pooling and dimension reduction.  

Finally, an output layer with linear activation is utilized for 

target clean speech spectra estimation. A detail configuration 

of the proposed architecture is given in Table 1. The dense 

blocks are shown in the brackets. The input and output size 

of the layers are specified as timeChannels ×

frequenceChannels. The layer hyper-parameters are given in 

(outChannels, kernelSize, dilationRate) formant.  

 
3. EXPERIMENTS  

 

Experiments are conducted using TIMIT database [25]. A 

total of 1000 sentences are selected for training and another 

400 sentences excluded from the training speech are used to 

construct the test set. White Gaussian, factory1 and babble 

noises from the NOISEX-92 database [26] and railway noise 

from the Aurora2 database [27] are used as noise signals. 

The training sentences are added to the four noise types to 

generate a set of artificially noisy utterances with signal-to-

noise-ratios (SNRs) from -5 to 15 dB, with 5 dB increments. 

For the signal analysis, each waveform is down-sampled to 8 

kHz, and a 256-point Hamming window is applied with a 

50% overlap. The noisy and clean speech spectra are 

represented by the 129 dimensional LPS features. The input 

and output features are normalized to zero mean and unit 

variance, and a reverse step is processed on the output. To 

measure the noise environment adaptation performance, the 

generalization ability test is evaluated for noise mismatch 

condition. The factory2 noise from the NOISEX-92 database  

and restaurant and street noise from the Aurora2 database, 

excluded from the training noise corpora, are used as the 

Table 1: Network configurations of the proposed 

architecture. 
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noise signals for generalization ability test. Two unseen SNR 

levels with -3 dB and 3 dB are also used for performance 

evaluation under noise match and noise mismatch conditions. 

We compare our proposed method with the following four 

baselines: 

1. DNN [6]. DNN contains 3 hidden layers and each 

layer has 1024 hidden nodes.  

2. LSTM [13]. LSTM contains 2 hidden layers, both 

of which has 1024 hidden units.  

3. C-RNN [5]. C-RNN uses a 2-D convolution with 

64 feature maps, kernel size (T, 16) and time-

frequency stride (1, 8) to transform the input noisy 

spectra. The convolution output is then connected 

to a Bi-LSTM with 2 hidden layers of size 512.  

The context frame of each method is all set as 11 (T=11). 

The efficient ADAM algorithm ( 0.001α ,
1 0.9β , 

2 0.999β , 810ε ) [28] is applied to train all the 

parameters of the DNN, LSTM, C-RNN and proposed 

architecture. All training vectors are subdivided into mini-

batches with each containing 128 training vectors; the 

weights are updated after each mini-batch. The objective 

speech quality and intelligibility is evaluated via perceptual 

evaluation of speech quality (PESQ) [29] and Short-Time 

Objective Intelligibility (STOI) scores, respectively [30]. 

The average PESQ and STOI values of the noisy speech 

and enhanced speech by competition methods across four 

seen noise types are given in Table 2. Table 3 illustrates the 

average PESQ and STOI values across seven SNR levels (-5, 

-3, 0, 3, 5, 10, 15 dB) for unseen noises. Table 2 and Table 3 

show that the proposed method produces consistently better 

PESQ and STOI performance than the DNN and LSTM 

approaches. Our method produces comparable or better 

performance compared with C-RNN, and notable 

performance advantage is evident under high SNR levels. 

Table 4 shows the computational efficiency comparison 

between the baselines and proposed model and it reveals that 

our proposed method achieves a large boost on the 

computational efficiency.  

 

Table 4: The computational efficiency comparisons of the 

baselines and proposed model.  

 

Method 
 Number of 

parameters (Million) 

DNN 

LSTM 

C-RNN 

 

 

 

3.68 

13.25 

12.47 

Proposed   0.75 

 

4. CONCLUSIONS 

 

A densely connected network with T-F dilated convolution 

was proposed for speech enhancement in this paper. The 

designed T-F dilated convolution block enlarge the receptive 

field and capture the contextual information in both temporal 

and frequency domains. The dense connectivity of each T-F 

convolution block ensures the maximum information flow 

between layers and alleviates the vanishing gradient problem. 

The 1-D convolution with the bottleneck structure is applied 

in the T-F convolution block to improve the computational 

efficiency. The performance evaluation shows that the 

introduced scheme produces consistently better enhancement 

performance than DNN and LSTM methods under seen and 

unseen noise conditions. Compared with C-RNN, the 

proposed method shows notable performance advantage 

under high SNR levels. The designed architecture improves 

the computation efficiency significantly, which shows the 

implementation potential to hardware.  

Table 2: PESQ and STOI scores in noise match condition. 
 

Metrics PESQ STOI 
Method Noisy DNN LSTM C-RNN Proposed Noisy DNN LSTM C-RNN Proposed 

SNR 15 2.7007  2.8403  3.0342  3.1015  3.2111  0.9252  0.8664  0.8983  0.8992  0.9280  

SNR 10 2.3713  2.7061  2.8671  2.9438  2.9770  0.8571  0.8405  0.8738  0.8768  0.8964  

SNR 5 2.0415  2.4954  2.6180  2.7070  2.6924  0.7611  0.7914  0.8264  0.8349  0.8433  

SNR 3 1.9110  2.3787  2.5088  2.5843  2.5654  0.7171  0.7641  0.8009  0.8106  0.8149  

SNR 0 1.7254  2.1906  2.2610  2.3876  2.3656  0.6463  0.7094  0.7384  0.7622  0.7622  

SNR -3 1.5503  1.9487  2.0325  2.1520  2.1291  0.5749  0.6403  0.6673  0.7000  0.6968  

SNR -5 1.4532  1.7907  1.7767  1.9812  1.9777  0.5290  0.5883  0.5917  0.6487  0.6478  

Avg. 1.9648  2.3358  2.4426  2.5510  2.5598  0.7158  0.7429  0.7710  0.7903  0.7985  

 
Table 3: PESQ and STOI scores in noise mismatch condition 

 

Metrics PESQ STOI 
Method Noisy DNN LSTM C-RNN Proposed Noisy DNN LSTM C-RNN Proposed 

restaurant 2.0460  2.1762  2.3124  2.3906  2.3866  0.7120  0.7231  0.7567  0.7650  0.7729  

street 2.2868  2.3934  2.6070  2.6982  2.7371  0.7932  0.7744  0.8150  0.8273  0.8432  

factory2 2.2618  2.4708  2.6596  2.7219  2.8019  0.7910  0.7843  0.8213  0.8322  0.8489  

Avg. 2.1982  2.3468  2.5263  2.6036  2.6419  0.7654  0.7606  0.7977  0.8082  0.8217  
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