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ABSTRACT
This paper proposes a method for designing a time-varying mini-
mum variance distortionless response (MVDR) beamformer using
time-frequency masks, with the aim of improving speech enhance-
ment in noisy multi-speaker environments. A key to successful
beamforming is to estimate accurately a time-varying spatial covari-
ance matrix (SCM) for noise composed of both stationary diffuse
noise and highly time-varying speech. For this purpose, we intro-
duce a stochastic model that can represent the time-varying char-
acteristics of the noise SCM, and derive a method for estimating a
time-varying noise SCM based on the model. Experiments show that
the proposed method can substantially improve the performance of
the beamformer in terms of automatic speech recognition (ASR) ac-
curacy and source-to-distortion ratio compared with a conventional
time-invariant MVDR beamformer.

Index Terms— Beamforming, Time-frequency mask, Time-
varying processing, Speech enhancement, ASR

1. INTRODUCTION

Recently, a mask-based MVDR beamformer has been extensively
studied as a frontend for far-field ASR [1, 2, 3, 4, 5]. This beam-
former is advantageous for improving the performance of a neural
network-based ASR backend because it can reduce noise while pre-
cisely maintaining the spectral shape of target speech. With this
approach, the masks are used to indicate the probability of speech
(or noise) dominating individual time-frequency (TF) bins [6, 7, 8],
and to estimate the spatial covariance matrices (SCMs) of the tar-
get speech (or the noise). The effectiveness of this approach has
been shown in tasks ranging from medium vocabulary far-field ASR
[3, 4, 5] to large vocabulary meeting transcription [9].

The accurate estimation of an SCM for noise is crucial when de-
signing an MVDR beamformer. Conventional approaches estimate
the noise SCM by averaging or smoothing the spatial characteristics
of the noise over a rather long time duration, assuming that the noise
SCM is time invariant or slowly time-varying [3, 4, 5, 10, 11, 12].
However, when the noise to be reduced includes both stationary dif-
fuse noise and highly time-varying sounds such as speech, the noise
SCM becomes time-varying even within a short time duration of
the order of a few hundreds of milliseconds. Accordingly, the con-
ventional approaches cannot precisely estimate the noise SCM, and
the noise reduction performance of the MVDR beamformer is rather
limited.

In this paper, we discuss a method for designing a time-varying
MVDR beamformer that enhances target speech in noisy multi-
speaker environments by offline processing. Since speech is one
of the noise sources to be reduced, it is desirable to estimate the
time-varying noise SCM with high time resolution of the order

of a few tens of milliseconds. For this purpose, we introduce a
stochastic model that can represent the time-varying characteristics
of the noise SCM. In the model, a complex inverse Wishart mix-
ture model (cIWMM) is used as the prior distribution of the noise
SCM [13], where rapid change in the noise SCM is represented by
its time-varying mixture weights, which are determined based on
masks that indicate which noise source dominates which TF bin. A
maximum a posteriori estimation (MAP) method is derived to obtain
the time-varying noise SCM.

We conducted simulation experiments on the enhancement of
target speakers from a set of multichannel sound mixtures, each
of which contained three simultaneous speakers and diffuse babble
noise. Two different types of masks, oracle masks and estimated
masks, were examined, where the oracle masks are the power ratios
of the target speech to the noise in the simulation data. With both
masks, the proposed method achieved significantly better word er-
ror rates (WERs) and source-to-distortion ratios (SDRs) [14] for the
enhanced signals than a time-invariant MVDR beamformer. Further-
more, WERs obtained with the proposed method decreased when we
used a shorter time block, with the maximum error reduction rate be-
ing 20.3 % compared with the time-invariant beamformer.

In the remainder of this paper, Section 2 summarizes related
work. Sections 3 and 4, respectively, describe the conventional
mask-based MVDR beamformer and the proposed time-varying
MVDR beamformer. Experimental results and concluding remarks
can be found in Sections 5 and 6, respectively.

2. RELATED WORK

Researchers have reported that the MVDR beamformer is effective
in improving the performance of far-field ASR [4, 10]. However,
little work has been done on whether or not it is advantageous to
make the beamformer time-varying.

Certain online beamforming techniques enable us to recursively
update the noise SCM in a frame-by-frame manner [11, 15]. How-
ever, the goal of these techniques is to achieve reliable online beam-
forming with a performance level similar to that obtained with offline
processing. Therefore, a rather small forgetting factor is adopted
for the recursive update, resulting in the noise SCM being greatly
smoothed over a long duration.

Full-rank spatial covariance analysis (FCA), which was pro-
posed for underdetermined blind source separation [16], mod-
els time-varying SCMs by employing the weighted sum of time-
invariant full-rank spatial covariance matrices. This model is closely
related to the cIWMM used in this paper, but it has never before
been employed to design time-varying MVDR beamformer. The
same is true of a complex Gaussian mixture model (cGMM) [3],
which was proposed for mask-based speech enhancement.
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3. MASK-BASED BEAMFORMING

This section gives a brief overview of mask-based MVDR beam-
forming. Here, masks indicate the probability of each source dom-
inating each TF bin. Many techniques have been proposed for esti-
mating the masks, e.g., techniques using cGMM [3], neural networks
[4, 5, 17, 18, 19], or combination of the two [20, 21]. Throughout
this paper, we assume that masks are estimated with certain existing
methods, and focus only on how to design the MVDR beamformer
based on the estimated masks.

3.1. Estimation of a steering vector using estimated masks

Suppose that a signal captured by I microphones contains a target
speech signal and certain additive noise, which is composed of one
or more noise sources. The captured signal is denoted as xtf =
(xtf,1, . . . , xtf,i, . . . , xtf,I)

⊤ ∈ CI in the STFT domain, where
t = 1, . . . , T , f = 1, . . . , F , and i = 1, . . . , I denote the indices
of time frames, frequency bins and microphones, respectively. The
superscript ⊤ denotes transpose.

With the mask-based MVDR beamformer, the estimated masks
are used to estimate an SCM for each source, separately, in the cap-
tured signal. Let j = 1, . . . , J represent the index of a source, where
j = v and j ̸= v, respectively, correspond to the target speech and
the other noise sources, and λ

(j)
tf ∈ R is the estimated mask that sat-

isfies λ(j)
tf ≥ 0 and

∑
j λ

(j)
tf = 1. Then the SCM for each source j

is estimated as

R̂(j)
f =

1∑
t λ

(j)
tf

∑
t

λ
(j)
tf xtfx

H
tf , (1)

where the superscript H denotes Hermitian transpose.
A steering vector, hf , that contains the room transfer functions

from the target speaker to the microphones, is estimated using gen-
eralized eigenvalue decomposition with noise covariance whitening
[22, 23] as

hf = R̂(n)
f Ev{(R̂(n)

f )−1R̂(v)
f }. (2)

Here, Ev{·} is a function for extracting an eigenvector correspond-
ing to the maximum eigenvalue. R̂(v)

f and R̂(n)
f are, respectively,

the estimated SCMs of the target speech and the noise, where R̂(n)
f

is equal to the sum of the SCMs of all the noise sources and calcu-
lated as

R̂(n)
f =

∑
j ̸=v

R̂(j)
f . (3)

3.2. MVDR beamforming

Given the steering vector, hf , an MVDR beamformer is estimated
as a filter, wf ∈ CI , that minimizes the power of the noise, i.e.,
|wH

f R̂
(n)
f wf |2, with a distortionless constraint on the target speech

direction, i.e., wH
f hf = 1, as follows:

wf =
(R̂(n)

f )−1hf

hH
f (R̂

(n)
f )−1hf

. (4)

Finally, we obtain the estimate of the target speech, ŝtf , by multi-
plying the filter, with the captured signal as follows:

ŝtf = wH
f xtf . (5)

4. PROPOSED METHOD

4.1. Need for time-varying SCM

In eq. (3), the noise SCM is obtained by mixing the time-invariant
SCMs of all the noise sources, calculated by eq. (1), with equal
time-independent contributions. However, when the noise includes
a highly time-varying sound source, such as speech, the contribution
of the SCM from that source to the noise SCM should also be time-
varying. As a consequence, the noise SCM obtained with eq. (3)
contains large mismatches with the true noise SCM at each short
time block, and this substantially lowers the upper performance limit
of the MVDR beamformer.

To overcome the above limit, we propose a way of estimating
the time-varying noise SCM based on the estimated mask. Assum-
ing that the captured signals are divided into consecutive short time
blocks, denoted by Bk for k = 1, 2, · · · , we derive, in the following,
a way of estimating the noise SCM, R̂(n)

k,f at each short time block,
which then yields the resultant time-varying MVDR beamformer as
follows:

wk,f =
(R̂(n)

k,f )
−1hf

hH
f (R̂

(n)
k,f )

−1hf

. (6)

4.2. Model-based time-varying SCM estimation

This section presents a stochastic model for the noise SCM, and a
way of calculating R̂(n)

k,f based on the MAP estimation.

4.2.1. Model of SCMs

We first assume that the captured signal, xtf (t ∈ Bk), at each TF
bin is categorized into target speech or noise according to the masks,
and modeled by a complex Gaussian mixture model defined as

p(xtf |Θ) = λ
(v)
tf Nc(xtf ;0,R(v)

k,f ) + λ
(n)
tf Nc(xtf ;0,R(n)

k,f ). (7)

where Θ =
{
R(v)

k,f ,R
(n)
k,f

}
is a set of unknown SCMs for the target

speech and the noise. Here, λ(n)
tf =

∑
j ̸=v λ

(j)
tf is the sum of the

masks over all the noise sources.
Next, as a conjugate prior of the complex Gaussian distribution,

we introduce a complex inverse Wishart distribution (cIWD) for the
prior of the target speech SCM. The cIWD is defined as

IW(R; Ψ, ν) :=
(detΨ)ν exp (−tr(ΨR−1))

πI(I−1)/2
∏I

i=1 Γ(ν − I + 1)(detR)ν+I
(8)

on a set of all Hermitian positive-definite matrices of size I × I . Ψ
and ν are hyperparameters of a cIWD, respectively, denoting a scale
parameter and a degree-of-freedom parameter. In contrast, consid-
ering that the noise is composed of more than one noise source, we
adopt cIWMM as the prior of the noise SCM, associating each ele-
ment distribution with each noise source. Then, the two priors are
written, respectively, as

p(R(v)
k,f ) =IW(R(v)

k,f ; Ψ
(v)
f , ν

(v)
f ), (9)

p(R(n)
k,f ) =

∑
j ̸=v

µ
(j)
k,fIW(R(n)

k,f ; Ψ
(j)
f , ν

(j)
f ), (10)

where Ψ
(j)
f and ν

(j)
f are hyperparameters of a cIWD of the jth

source, and µ
(j)
k,f is the mixture weight of the jth noise source.
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The time-varying characteristics of the noise SCM are modeled
in eq. (10). In order to model the time-varying contribution of each
noise source, we determine the mixture weight, µ(j)

k,f , at each short
time block Bk as the ratio of the sum of the masks for the jth source
to that for all the sources as follows:

µ
(j)
k,f =

∑
t∈Bk

λ
(j)
tf∑

t∈Bk,j
′ ̸=v λ

(j′)
tf

. (11)

On the other hand, to make the estimation reliable, we determine
Ψ

(j)
f by offline processing, as a time-invariant SCM of the jth source

estimated by eq. (1) multiplied with a constant ν(j)
f − I as

Ψ
(j)
f =

ν
(j)
f − I∑
t λ

(j)
tf

∑
t

λ
(j)
tf xtfx

H
tf . (12)

4.2.2. MAP estimation

Letting Xkf = {xtf |t ∈ Bk} be a set of captured signals in block
k, the MAP function, L(Θ), to be maximized becomes

L(Θ) = log p(Xkf |Θ) + log p(Θ) (13)

=
∑
f,k

∑
t∈Bk

log
[
λ
(v)
tf Nc(xtf ;0,R(v)

k,f )

+ λ
(n)
tf Nc(xtf ;0,R(n)

k,f )
]

+
∑
f,k

log IW(R(v)
k,f ; Ψ

(v)
f , ν

(v)
f )

+
∑
f,k

log
∑
j ̸=v

µ
(j)
k,fIW(R(n)

k,f ; Ψ
(j)
f , ν

(j)
f ). (14)

Because it is difficult to maximize the MAP function analytically,
we instead maximize a minorizer function Q(Θ) [24] that satisfies

L(Θ) ≥
∑
f,k

∑
t∈Bk

{
λ
(v)
tf logNc(xtf ;0,R(v)

k,f )

+ λ
(n)
tf logNc(xtf ;0,R(n)

k,f )
}

+
∑
f,k

log IW(R(v)
k,f ; Ψ

(v)
f , ν

(v)
f )

+
∑
f,k

∑
j ̸=v

µ
(j)
k,f log IW(R(n)

k,f ; Ψ
(j)
f , ν

(j)
f ) =: Q(Θ).

(15)

By differentiating Q(Θ) with respect to R(n)
k,f and setting it at zero,

we obtain

R̂(n)
k,f =

∑
t∈Bk

λ
(n)
tf xtfx

H
tf +

∑
j ̸=v µ

(j)
k,fΨ

(j)
f∑

t∈Bk
λ
(n)
tf +

∑
j ̸=v µ

(j)
k,f (ν

(j)
f + I)

. (16)

Eq. (16) is the solution of the MAP estimation.
Figure 1 illustrates the processing flow at each frequency f .

First, as preprocessing, the time-invariant prior of each noise source
is calculated with eq. (12) using a whole utterance, and then the time-
varying noise SCM is calculated with eqs. (11) and (16).

Frame-wise SCM SCM prior 

Block-wise SCM

Preprocessing

for each  

(offline)

Block-wise

processing

Mixture weight

Fig. 1. Processing flow of proposed method.

4.3. Simple alternative formulation

Even when estimated masks contain only one noise class, we can still
obtain time-varying noise SCMs as a result of the MAP estimation.
This can be a simple alternative formulation of the proposed method.
The MAP solution of this formulation becomes

R̂(n)
k,f =

∑
t∈Bk

λ
(n)
tf xtfx

H
tf +Ψ

(n)
f∑

t∈Bk
λ
(n)
tf + ν

(n)
f + I

, (17)

where Ψ
(n)
f and ν

(n)
f are hyperparameters of the cIWD. In the ex-

periments, we determine Ψ
(n)
f using eq. (12) and replacing ν

(j)
f and

λ
(j)
tf with ν

(n)
f and λ

(n)
tf .

5. EXPERIMENTS

To evaluate the efficacy of the proposed method, in the following we
compared its performance with that of conventional beamformers in
terms of ASR accuracy and SDR.

5.1. Dataset

A set of simulated sound mixtures were prepared for the experi-
ments. Each mixture contained three simultaneous speech utterances
and diffuse babble noise. All three utterances in each mixture were
extracted from the Wall Street Journal (WSJ) corpus [25]. One of
them was used as a target to be enhanced, and the other two were
used as jammers to be reduced. While each mixture included a whole
utterance of the target, it contained only beginning parts (2 secs) of
the jammers to simulate the short speech overlap that often occurs
in real conversation. We convolved each utterance with impulse re-
sponses measured using 4 microphones under the recording condi-
tion shown in Fig. 2. The target was randomly placed at A or B, and
the two jammers were randomly placed at two locations of 1, 2 or
3. The signal-to-noise ratio (SNR) between the target and the babble
noise was set at 5 dB, and the SNRs between the target and the jam-
mers were randomly set at -5, 0, or 5 dB. 7138 and 1640 mixtures
were prepared as training and development sets, respectively.

5.2. Methods to be compared and evaluation metrics

We evaluated two beamformers for the proposed method, hereafter
denoted by TV1 and TV2, that calculate the time-varying noise
SCMs, respectively, with eqs. (16) and (17). Short time blocks with
sizes of 1, 2, 4, 8, 16, 24, and 32 frames were used for the time-
varying estimation. STFT was performed using a 64 msec Hanning
window with a 16 msec shift. We compared TV1 and TV2 with
a conventional time-invariant MVDR beamformer that calculated
time-invariant noise SCMs with eq. (3), and hereafter denoted by
TIV. We further compared TV1 and TV2 with the conventional
mask-based online MVDR beamformer proposed in [3], hereafter
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Fig. 2. Recording conditions.

denoted by TVconv. To make the comparison fair, for TVconv, we
initialized the noise SCM as that obtained with TIV and estimated
the steering vector with eq. (2), while we did not use the SCM
model.

We took the WERs and SDRs obtained with TIV as the base-
line, and evaluated the word error reduction rates (WERRs) and
source-to-distortion ratio improvements (SDRimps) obtained with
TV1 and TV2 as the relative improvement from the TIV baseline.
For the WER evaluation, we adopted an ASR system developed for
CHiME-4 [26], which was composed of a TDNN acoustic model
(AM) trained with lattice-free MMI, and a trigram language model
[27, 28]. The AM was trained on the above-mentioned training set.
The WER and SDR of the development set with no beamforming
were 24.8 % and -2.28 dB, respectively.

5.3. Evaluation using oracle masks

We first evaluated the beamformers using oracle masks to exclude
the influence of mask estimation errors from the evaluation. The
oracle masks were given by the power ratios of each source to the
captured signal at each TF bin. Figure 3 shows the WERRs and
SDRimps obtained with TV1 and TV2 relative to the TIV baseline
(WER: 8.66 %, SDR: 5.49 dB), setting ν = 20 and 40 for the cIWD
in eq. (8). The figure clearly shows that the two proposed methods
provided significantly improved WERs and SDRs compared with
TIV, and that TV1 was consistently better than TV2. Furthermore,
the improvement in the WERs and SDRs was larger in most of the
cases as the block size became smaller. In particular, TV1 achieved
the best WERR when the block size was 1 frame. Note that without
the noise SCM prior, the WERRs obtained with TV1 were 7.7, 2.4,
and -547.8 % with block sizes of 32, 16, and 1 frames, respectively.
This also indicates the significant importance of the noise SCM prior.

We then evaluated the conventional online beamformer, TVconv,
using a block size of 4 frames. The best WERR obtained with TV-
conv was 6.6 % when we set the forgetting factor at 0.1. In compar-
ison, TV1 and TV2 achieved much better WERRs, i.e., 17.9 % and
13.4 %, under the same condition.

5.4. Evaluation using estimated masks

Next, we evaluated the beamformers using estimated masks to take
mask estimation errors into account. The masks were estimated with
a method that integrates a neural network and a cGMM, denoted as
NNcGMM [20]. In the experiments, we found that a permutation
problem [29] remains in the masks estimated with NNcGMM, and
greatly affects the performance of the beamformers. For comparison,
we also evaluated NNcGMM after correcting the permutation align-
ment of the masks using oracle masks. NNcGMMs with and without
the oracle permutation (OP) alignment are denoted by NNcGMM w/
and w/o OP.
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Fig. 3. WERRs and SDRimps obtained with TV1 and TV2 com-
pared with TIV baseline (WER: 8.66 %, SDR: 5.49 dB).
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Fig. 4. WERRs obtained with NNcGMMs w/o and w/ OP compared
with the TIV baseline (10.1 % w/o OP, 9.32 % w/ OP).

WERRs obtained with TV1 and TV2 relative to the TIV base-
line (10.1 % w/o OP, 9.32 % w/ OP) are shown in Fig. 4, where we
set ν = 40 for TV1 and 20 for TV2 as the best parameters for the
respective methods. Again, TV1 and TV2 were significantly bet-
ter than TIV. Furthermore, NNcGMM w/ OP was much better than
NNcGMM w/o OP. This suggests that accurate permutation align-
ment is important for the time-varying MVDR beamformer.

6. CONCLUDING REMARKS

This paper proposed a method for designing a mask-based time-
varying MVDR beamformer for speech enhancement in noisy multi-
speaker environments. The proposed method models the prior distri-
bution of a time-varying noise SCM with a cIWMM, and estimates
the SCM based on the MAP estimation. We conducted simulation
experiments using oracle masks and estimated masks, and the pro-
posed method achieved significantly better WERs and SDRs than
two conventional mask-based MVDR beamformers, namely a time-
invariant beamformer and an online beamformer. Furthermore, we
confirmed that the performance of the proposed method improved in
most cases as we reduced the size of a short time block. This con-
firms that the proposed method can reliably estimate the noise SCM
with a high time resolution of the order of a few tens of milliseconds.
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