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ABSTRACT

Speaking style conversion (SSC) is the technology of converting nat-
ural speech signals from one style to another. In this study, we pro-
pose the use of cycle-consistent adversarial networks (CycleGANs)
for converting styles with varying vocal effort, and focus on conver-
sion between normal and Lombard styles as a case study of this prob-
lem. We propose a parametric approach that uses the Pulse Model
in Log domain (PML) vocoder to extract speech features. These
features are mapped using the CycleGAN from utterances in the
source style to the corresponding features of target speech. Finally,
the mapped features are converted to a Lombard speech waveform
with the PML. The CycleGAN was compared in subjective listen-
ing tests with 2 other standard mapping methods used in conversion,
and the CycleGAN was found to have the best performance in terms
of speech quality and in terms of the magnitude of the perceptual
change between the two styles.

Index Terms— CycleGAN, style conversion, vocal effort, Lom-
bard speech, pulse-model in log domain vocoder

1. INTRODUCTION

Vocal effort based speaking style conversion (SSC) is the technol-
ogy of converting natural speech signals spoken in a particular style
to another (e.g. whisper-to-normal or normal-to-Lombard [1]) while
retaining the linguistic and speaker-specific information of the orig-
inal speech signal. SSC has multiple potential applications, such
as personalizing speech to the needs of the end-listener. For in-
stance, normal speech could be converted into clear speech [2, 3]
for hearing-impaired listeners. SSC can be also used for generation
of context-dependent speech samples from a limited set of original
recordings for recreational applications such as gaming and virtual
reality. While there has already been work in whispered-to-normal
speech conversion (e.g., [4–8]), SSC for other aspects of vocal effort
has only been studied in a small number of previous works [9–13]
that only focus on direct signal manipulation or parallel data train-
ing.

In the current study, we focus on conversion between normal and
Lombard styles. Lombard speech corresponds to a speaking style
that talkers naturally employ in noisy environments to improve intel-
ligibility. We use a data driven parametric setup that uses a vocoder
to extract speech features (see [14]). These features are mapped
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using machine learning models from the source style to the corre-
sponding features of the target style. Finally, the mapped features
are transformed to target style speech waveform with the vocoder.

Collection of a large quantity of Lombard speech data (as well
as data from other styles with varying vocal effort) is laborious and
potentially injurious to health of the speakers. Moreover, the amount
of parallel training data, where the utterances in the source and target
styles are from the same speaker speaking the same linguistic con-
tent, is limited. Our earlier work [14,15] also suggest that the limited
availability of parallel data in normal and Lombard styles causes a
bottleneck in system performance. This encourages the use of non-
parallel mapping models within the parametric SSC framework.

The standard approach for non-parallel training in the domain of
voice conversion is the INCA algorithm [16] (see Section 3.2.2) that
iteratively finds alignments between individual frames in the source
and target styles. Variants of the basic INCA may use several sub-
sequent frames [17], dynamic features [18], or custom distance met-
rics [19] in the INCA alignment process. As a recent alternative
to INCA, Cycle-consistent adversarial networks (CycleGANs, [20])
have shown promise in the domain of voice conversion. For ex-
ample [21] uses dynamic frame-level Mel-spectrum features with a
standard feed-forward deep neural network (DNN) to achieve high
quality voice-conversion. [22] uses a convolutional neural network
(CNN) with Gated linear units (GLUs) and residual connections to
map Mel features with a CycleGAN. The major advantage of the Cy-
cleGAN architecture, as compared to other non-parallel alternatives
such as INCA, is that it does not rely on data alignment during the
training. Instead, the method simply learns to create transformations
to the source features that are statistically indistinguishable from the
target domain while learning the reverse mapping at the same time.
Since the alignment process is non-trivial for non-parallel data, espe-
cially in case of SSC where the source and target style features can
come from the same talker but should still exhibit different signal
properties (hence the need for conversion), the CycleGAN approach
can potentially be especially useful.

Given this background, the overall goal of the current paper is
to study the applicability of CycleGANs for the task of vocal effort
based SSC (normal vs. Lombard), and to compare it to the standard
INCA-based non-parallel approach and to our previous baseline sys-
tem utilizing parallel data [14]. The systems are compared using
subjective listening tests evaluating the success of style conversion
and overall quality of the converted speech.

The paper is organized as follows: Section 2 describes the gen-
eral structure and mathematical formulation of the CycleGAN used
in the current study. Section 3 provides the basic framework for
the parametric SSC system and outlines the vocoder (Pulse Model in
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Log domain, [23]) and mapping methods studied. Section 4 explains
the experimental setup, including data used, system specification de-
tails and the subjective evaluation. Finally, Sections 5 and 6 describe
the results and conclusions respectively.

2. CYCLE-CONSISTENT ADVERSERIAL NETWORKS
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Fig. 1. CycleGAN with mapping functions G and F , and discrimi-
natorsDX andDy . The forward cycle, backward cycle, and identity
mapping are indicated with red, blue, and green respectively

A CycleGAN [20] is a non-parallel learning scheme that learns
bi-directional deterministic mappings between domains X and Y ,
given non-aligned training samples xi ∼ p(X) and yi ∼ p(Y ).
A CycleGAN is based on the concept of adversarial learning [24],
where a generative model is trained as a solution to a minmax two-
player game between two neural networks called as the generator
and discriminator. The basic structure of a CycleGAN is shown in
Figure 1. It consists of two functions G and F , which map data
fromX → Y and Y → X respectively, and two discriminatorsDX

andDY , which determine whether data is from the true distributions
P (X) and P (Y ), respectively. During training, data flows in two
directions: the forward cycle xi

G−→ y′i
F−→ x′′i and the backward

cycle yi
F−→ x′i

G−→ y′′i as indicated by the blue and red arrows,
respectively, in Figure 1.

The loss function of a CycleGAN has three terms. The first one,
adversarial loss, measures distance of the mapped data to the true
target distribution. In our implementation, we use the Wasserstein
distance metric (WGAN loss) with gradient penalty [25], defined as

Lgan(G,DY , X, Y ) = E
y∼p(Y )

[DY (y)]− E
x∼p(X)

[DY (G(x))]

+ λg E
ŷ∼p(Ŷ )

[(||∇ŷDY (ŷ)||2 − 1)2]

(1)
where p(Ŷ ) is implicitly defined by sampling along the straight lines
between pairs of points y and G(x). A similar loss term is derived
for Lgan(F,DX , X, Y ).

A cyclic reconstruction loss term is also defined to ensure that
data passing through both G and F (or in another direction) results
in an identity mapping as shown

Lcyc(G,F,X, Y ) = E
x∼p(X)

[||F (G(x))− x||1]

+ E
y∼p(Y )

[||G(F (y))− y||1]
(2)

Finally, the identity mapping loss [20, 26] is defined to ensure
that input data already corresponding to target domain do not get
transformed in G or F (shown in green in Figure 1):

Lid(G,F,X, Y ) = E
x∼p(X)

[||F (x)− x||1]

+ E
y∼p(Y )

[||G(y))− y||1]
(3)

The optimal mapping functionsG∗ and F ∗ are obtained by solv-
ing the minmax-game defined as

G∗, F ∗ = argmin
G,F

max
DX ,DY

L(G,F,DX , DY , X, Y )

where, L(G,F,DX , DY , X, Y ) = Lgan(G,DY , X, Y )

+ Lgan(F,DX , X, Y ) + λcycLcyc(G,F,X, Y )

+ λidLid(G,F,X, Y )

(4)

where λcyc, λid, and λg from Equation 1 control the relative impor-
tance of the cyclic reconstruction loss, the identity mapping loss, and
the gradient penalty term of the WGAN respectively.

3. NON-PARALLEL SPEAKING STYLE CONVERSION

The current study focuses on SSC between normal and Lombard
styles. We employ a parametric approach based on the manipulation
of frame level vocoder features. Pulse Model in Log domain (PML
[23]) is chosen as the vocoder, as it demonstrated good performance
in two recent vocoder studies [23, 27]. Figure 2 shows the block
diagram of our parametric SSC system. The source style features
are first extracted using the PML vocoder analysis, viz: 1) the binary
noise mask (BNM), 2) fundamental frequency (F0), 3) the voicing
decision (V/UV) mask, and 4) the spectral envelope. The durations
of the voiced and unvoiced segments are then scaled by a constant
factor respectively (see [28] for a study of the duration of phonemic
classes in Lombard speech). Features that are most important for
the styles in question are modified using the trained mapping model.
For SSC between normal and Lombard speech, after testing various
combinations of featues based on subjective quality of the converted
speech, we chose the F0, voicing decisions (V/UV), and the first
10 MGC coefficients (the major properties of the spectral envelope)
as the features for mapping. The modified features are then fed to
the PML vocoder synthesis to generate the speech utterance in the
desired target style. The sections below describe the PML vocoder
and the mapping methods chosen for comparison.

3.1. PML Vocoder

PML [23] is a recent state-of-the art vocoder utilizing log-domain
source-filter modeling, sinusoidal signal analysis and pitch syn-
chronous pulse-based synthesis. The vocoder’s distinctive property
is its aperiodicity modeling via a phase distortion deviation (PDD)
spectrum, which generalizes to modeling both voiced and unvoiced
speech without explicit voicing decisions. The PDD is thresholded
to produce a binary noise mask (BNM), which is averaged in Mel-
bands for parametric processing.

3.2. Mapping methods

3.2.1. Parallel GMM learning

In the baseline system with parallel data, a standard GMM is used
as it was shown to compare well against DNNs and non-parametric
Bayesian methods in an earlier study with the present data set [14].
For the GMM training, dynamic time warping (DTW) [29] aligned
source, xs, and target data, xt, are concatenated as x = [xs, xt]

T to
obtain N samples of D-dimensional training data X = [x1, ..,xN ]
for the GMM model. During mapping, the minimum mean square
error (MMSE) estimate of target features yt, ŷt is calculated as
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Fig. 2. Block diagram of the speaking style conversion system.

ŷt =

K∑
k=1

p(k|ys,X)[µt|k +Σts|kΣ
−1
ss|k(ys − µs|k)]

where, p(X;θk,π) =

K∑
k=1

πkN ([
[
µs|k
µt|k

]
,
[
Σss|k Σst|k
Σts|k Σtt|k

]
)

(5)

where θk = {µk,Σk}, are the mean and covariance of the kth
Gaussian, the weights, πk, sum to one and p(k|ys,X) is the prob-
ability of the kth component calculated based on πk and marginal
likelihood of the kth Gaussian. (See [30] for a detailed derivation
and [30–32] for other use-cases of GMM mapping.)

3.2.2. INCA

The Iterative combination of a Nearest Neighbor search step and
a Conversion step Alignment method (INCA) [16] is a commonly
used non-parallel learning algorithm that iteratively looks for nearest
neighbor feature pairs between the source and target speaker while
also iteratively updating the conversion model to progressively im-
prove matching to the target speaker. A GMM is used as the map-
ping model (see Section 3.2.1) from source to target, as the over-
smoothing effect of the GMM mapping helps to minimize the nega-
tive effects of misalignments during the initial iterations (see [16]).

3.2.3. CycleGAN

Several DNN architectures were tested to model the mapping func-
tions G and F and the discriminators Dx and Dy (section 2). In our
current implementation a deep convolutional neural network with
residual connections (CNN ResNet) is used (similar to [20]). Fig-
ure 3 shows the basic structure of a single layer of this network.
Each layer has k-channels consisting of a w-point gated convolu-
tional unit. The output of this unit is passed through an affine trans-
form and added with a residual of the original input. The residual
connection helps in preventing the problem of diminishing gradients
in deeper networks. A CycleGAN with a feed-forward network that
maps frame level features with temporal context as in [21] was also
tested, but it was found to be inferior to the proposed architecture
in our initial tests. The source codes of the CycleGAN are available
under an open source license1.
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Fig. 3. Block diagram of layer n of the CNN used to model the
mapping functions G and F and the discriminators Dx and Dy .

1https://github.com/shreyas253/CycleGAN_1dCNN/

4. EXPERIMENTAL SETUP
4.1. Data

Read and conversational Lombard speech corpus (see [33] for de-
tails) consisting of recordings from 20 Finnish speakers (10 female)
was used in the present study. The read part includes a text of
90 words read by each speaker (approx. 1 min per speaker). The
same text was produced in two speaking styles, normal and Lom-
bard. The conversational part consists of realistic telephone conver-
sations, where the subjects played the role of either a caller or a travel
agent. Size of this section is approximately the same as the read sec-
tion. In order to elicit Lombard speech, background noise (highly
nonstationary pub noise [34]) was played to the speakers’ ears with
headphones while they were being recorded [33]. Data were down-
sampled from 48 kHz to 16 kHz for the present experiments.

4.2. System specifications

Of the 20 speakers in the dataset, two (1 male and female) were ran-
domly chosen for evaluation in listening tests (with the constraint
that the speakers in the selection pool show clear normal and Lom-
bard speech styles without stuttering), while the rest of the 18 speak-
ers were used for training. The features to be mapped were nor-
malized to zero mean and unit variance. During PML feature ex-
traction, analysis frames of 25 ms with a 5-ms frame shift were
employed. F0 was computed using the RAPT algorithm from the
SPTK toolkit [35], and the range of allowed frequencies set to 50–
500 Hz. The binary noise mask was 25-dimensional. The spec-
tral envelope was extracted using STRAIGHT analysis and repre-
sented as 40-dimensional Mel-generalized cepstrum (MGC) coeffi-
cients. The scaling ratios for the duration conversion of the voiced
and unvoiced segments of speech were calculated as the mean ratio
of the corresponding durations in the DTW aligned segments of two
speaking-styles, measured across all (un)voiced segments in the read
data. These were found to be 1.08 and 0.88, i.e. the voiced and un-
voiced regions were stretched and compressed, respectively (in line
with [28]). The durations were modified by applying cubic spline
interpolation to the resulting feature time-series.

The number of components in the GMM was set to 8 (as in [16])
for both the parallel GMM and INCA mapping methods. The INCA
algorithm was allowed to run for 10 iterations (brief experiments
showed that the performance doesn’t improve beyond that, as noted
in [16] for the use-case of voice conversion). For the CycleGAN, the
number of CNN layers for the mapping functions and discriminators
was set to 8 with the last layer being a linear convolutional layer.
The number of channels per layer, k, was set to 256. The width of
the convolutions, w, was set to 11. The hyperparameters of the loss
function in Equation 4, λg , λcyc and λids were set to 10, 10, and 5,
respectively. The final loss function also included a penalty on dis-
criminator output magnitudes to prevent the models from engaging
in a “magnitudes race”, as described in [36]. The training was run
for 100 epochs with the identity mapping loss, Lid being dropped
after 50 epochs (similar to [22]).
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4.3. Subjective Evaluation

The subjective evaluation included a Lombardness test and a Quality
test. 19 Finnish listeners participated in the listening tests. Sounds
were played to the listeners in a quiet room using Sennheiser HD598
headphones. All the sound samples being compared were normal-
ized to have the same RMS value. Each listening test included a
tutorial phase before the actual test. Furthermore, the listeners were
asked to adjust the sound volume to a loud yet comfortable level
during the tutorial session, after which the volume was kept fixed.
The listeners were allowed to listen to the samples as many times
as they wished. Each test compared 4 unique utterances (2 speakers
and 2 randomly chosen sentences) over the 3 methods (see Section
3.2) and for both normal-to-Lombard and Lombard-to-normal con-
versions. The tutorial sessions included utterances from speakers not
included in the actual tests. The two tests took approximately one
hour for the subjects to complete. A Speaking style similarity test
(similar to a speaker similarity test commonly used in voice conver-
sion [37]) was also conducted. However, the pattern of results from
this was highly similar to the Lombardness-test, and the results are
not therefore separately reported due to space considerations.

4.3.1. Lombardness Test

This test was set up as a MUSHRA-like (MUltiple Stimuli with Hid-
den Reference and Anchor, [38]) test. Each trial aimed to evaluate
the ’Lombardness’ of the mapped utterances. In a single trial, the
listeners were given reference samples consisting of the original ut-
terance spoken in both normal and Lombard styles and a set of unla-
beled samples with the same speaker and lexical content to be rated
on a Lombardness scale from 0 to 100. The utterances to be rated
included a set of mapped utterances (from the 3 methods described
in Section 3.2) and two hidden references of the original natural ut-
terances in normal and Lombard styles (to be rated as 0 and 100,
respectively). Each listener rated 8 trials in total. Before taking the
test, the listeners were given a brief written description of Lombard
speech. The listeners were also asked to focus on the style and try
to ignore the speech quality. The tutorial session involved exposing
the listeners to utterances in both styles. The tests were implemented
using MATLAB’s GUI (adapted from [39]).

4.3.2. Quality test

The quality test was performed using the comparison category rating
(CCR) test [40]. For a given trial, the listeners were presented with
pairs of speech utterances and asked to rate the perceived quality of
the second utterance in comparison to the first one using a contin-
uous rating scale that translates to English as: -3, much worse; -2,
worse; -1, slightly worse; 0, almost similar; 1, slightly better, 2, bet-
ter; 3, much better. In a single trial, each utterance pair consisted
of a mapped utterance and its corresponding natural target style ut-
terance. This was presented in both orders and also includes null
pairs. Each listener rated 56 utterances in total. The tutorial session
involved rating 3 CCR utterance pairs (including a null pair). The
average of the scores for each unique utterance pair was calculated
as the comparison mean opinion score (CMOS) [40], and normal-
ized to zero mean across each listener (as suggested in [41]). As a
result, lower normalized CMOS value means better speech quality.

5. RESULTS

The results of the Lombardness and Quality subjective tests are
shown in Figures 4 and 5 respectively. For the normal-to-Lombard
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Fig. 4. Results of the Lombardness test for the Lombard-to-Normal
(left, lower is better) and Normal-to-Lombard (right, higher is bet-
ter) style conversions. Standard errors are shown in red. Significant
differences values as measured using the Student’s t-test with Bon-
ferroni correction are highlighted.
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Fig. 5. Results of the Quality test for the Lombard-to-Normal (left,
lower is better) and Normal-to-Lombard (right, lower is better) style
conversions. Standard errors are shown in red. Significant differ-
ences values as measured using the Mann-Whitney U-test with Bon-
ferroni correction are highlighted.

conversion, the CycleGAN produces the highest Lombardness,
followed by the INCA and the parallel GMM. INCA and Cycle-
GAN are very close in terms of quality, but are both significantly
better than the parallel GMM. For the Lombard-to-normal map-
ping, the Lombardness of the 3 methods is almost indistinguish-
able. However, in terms of quality the CycleGAN is significantly
better than the other two. Example sound files are available at
https://shreyas253.github.io/SpStyleConv_CycleGAN/.

6. DISCUSSIONS AND CONCLUSION

This paper studied the use of non-parallel learning schemes to the
task of vocal effort speaking style conversion, in this case between
normal and Lombard speech. We compared two non-parallel meth-
ods, a new CycleGAN-based approach and INCA (a widely used
method in voice conversion), to an earlier GMM-based baseline sys-
tem that uses parallel data. Listening tests indicate that the Cycle-
GAN produces encouraging results compared to the other two meth-
ods, producing the largest Lombard effect in normal-to-Lombard
conversion while having indistinguishable quality from the INCA-
based approach. In Lombard-to-normal conversion, the CycleGAN
achieves superior speech quality to the other methods. CycleGANs
should be therefore explored further in other vocal effort continuum
conversion problems, as they appear to provide a strong alternative
for non-parallel training on problems where parallel data scarcity is
a real challenge.
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