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ABSTRACT
Non-parallel voice conversion (VC) is a technique for learn-
ing the mapping from source to target speech without relying
on parallel data. This is an important task, but it has been
challenging due to the disadvantages of the training condi-
tions. Recently, CycleGAN-VC has provided a breakthrough
and performed comparably to a parallel VC method without
relying on any extra data, modules, or time alignment pro-
cedures. However, there is still a large gap between the real
target and converted speech, and bridging this gap remains a
challenge. To reduce the gap, we propose CycleGAN-VC2,
which is an improved version of CycleGAN-VC incorpo-
rating three new techniques: an improved objective (two-
step adversarial losses), improved generator (2-1-2D CNN),
and improved discriminator (PatchGAN). We evaluated our
method on a non-parallel VC task and analyzed the effect of
each technique in detail. An objective evaluation showed that
these techniques help bring the converted feature sequence
closer to the target in terms of both global and local structures,
which we assess by using Mel-cepstral distortion and modu-
lation spectra distance, respectively. A subjective evaluation
showed that CycleGAN-VC2 outperforms CycleGAN-VC in
terms of naturalness and similarity for every speaker pair,
including intra-gender and inter-gender pairs.1

Index Terms— Voice conversion (VC), non-parallel
VC, generative adversarial networks (GANs), CycleGAN,
CycleGAN-VC

1. INTRODUCTION

Voice conversion (VC) is a technique for transforming the
non/para-linguistic information of given speech while pre-
serving the linguistic information. VC has great potential for
application to various tasks, such as speaking aids [1, 2] and
the conversion of style [3, 4] and pronunciation [5].

One successful approach to VC is statistical, and many
methods in this vein have been proposed: Gaussian mixture
model (GMM)-based methods [6, 7, 8], neural network (NN)-
based methods (including restricted Boltzmann machines
(RBMs) [9, 10], feed forward NNs [11, 12, 13], recurrent NNs
(RNNs) [14, 15], convolutional NNs (CNNs) [5], and gener-
ative adversarial networks (GANs) [5]), and exemplar-based
methods using non-negative matrix factorization (NMF) [16,
17].

1The converted speech samples are provided at http://www.
kecl.ntt.co.jp/people/kaneko.takuhiro/projects/
cyclegan-vc2/index.html.

Many VC methods (including the above-mentioned) are
categorized as parallel VC, which relies on the availability
of parallel utterance pairs of the source and target speakers.
However, collecting such data is often laborious or impracti-
cal. Even if obtaining such data is feasible, many VC methods
require a time alignment procedure as a pre-process, which
may occasionally fail and requires careful pre-screening or
manual correction. To overcome these restrictions, this paper
focuses on non-parallel VC, which does not rely on parallel
utterances, transcriptions, or time alignment procedures.

In general, non-parallel VC is quite challenging and is
inferior to parallel VC in terms of quality due to the disad-
vantages of the training conditions. To alleviate these se-
vere conditions, several studies have incorporated an extra
module (e.g., an automatic speech recognition (ASR) mod-
ule [18, 19]) or extra data (e.g., parallel utterance pairs among
reference speakers [20, 21, 22, 23]). Although these addi-
tional modules or data are helpful for training, preparing them
imposes other costs and thus limits application. To avoid
such additional costs, recent studies have examined the use
of stochastic NNs (e.g., an RBN [24] and variational autoen-
coders (VAEs) [25, 26]), which embed the acoustic features
into common low-dimensional space with the supervision of
speaker identification. It is noteworthy that they are free from
extra data, modules, and time alignment procedures. How-
ever, one limitation is that they need to approximate data dis-
tribution explicitly (e.g., Gaussian is typically used), which
tends to cause over-smoothing through statistical averaging.

To overcome these limitations, recent studies [25, 27, 28]
have incorporated GANs [29], which can learn a generative
distribution close to the target without explicit approximation,
thus avoiding the over-smoothing caused by statistical averag-
ing. Among these, in contrast to some of the frame-by-frame
methods [25, 28], which have difficulty in learning time de-
pendencies, CycleGAN-VC [27] (published in [30]) makes it
possible to learn a sequence-based mapping function by using
CycleGAN [31, 32, 33] with a gated CNN [34] and identity-
mapping loss [35]. This allows sequential and hierarchical
structures to be captured while preserving linguistic informa-
tion. With this improvement, CycleGAN-VC performed com-
parably to a parallel VC method [7].

However, even using CycleGAN-VC, there is still a chal-
lenging gap to bridge between the real target and converted
speech. To reduce the gap, we propose CycleGAN-VC2,
which is an improved version of CycleGAN-VC incorporat-
ing three new techniques: an improved objective (two-step
adversarial losses), improved generator (2-1-2D CNN), and
improved discriminator (PatchGAN). We analyzed the effect
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of each technique on the Spoke (i.e., non-parallel VC) task
of the Voice Conversion Challenge 2018 (VCC 2018) [36].
An objective evaluation showed that the proposed techniques
help bring the converted acoustic feature sequence closer to
the target in terms of global and local structures, which we
assess by using Mel-cepstral distortion and modulation spec-
tra distance, respectively. A subjective evaluation showed
that CycleGAN-VC2 outperforms CycleGAN-VC in terms
of naturalness and similarity for every speaker pair, including
intra-gender and inter-gender pairs.

In Section 2 of this paper, we review the conventional
CycleGAN-VC. In Section 3, we describe CycleGAN-VC2,
which is an improved version of CycleGAN-VC incorporat-
ing three new techniques. In Section 4, we report the exper-
imental results. We conclude in Section 5 with a brief sum-
mary and mention of future work.

2. CONVENTIONAL CYCLEGAN-VC

2.1. Objective: One-Step Adversarial Loss

Let x ∈ RQ×Tx and y ∈ RQ×Ty be acoustic feature se-
quences belonging to source X and target Y , respectively,
where Q is the feature dimension and Tx and Ty are the
sequence lengths. The goal of CycleGAN-VC is to learn
mapping GX→Y , which converts x ∈ X into y ∈ Y , without
relying on parallel data. Inspired by CycleGAN [31], which
was originally proposed in computer vision for unpaired
image-to-image translation, CycleGAN-VC uses an adver-
sarial loss [29] and cycle-consistency loss [37]. Addition-
ally, to encourage the preservation of linguistic information,
CycleGAN-VC also uses an identity-mapping loss [35].

Adversarial loss: To make a converted featureGX→Y (x)
indistinguishable from a target y, an adversarial loss is used:

Ladv(GX→Y , DY ) = Ey∼PY (y)[logDY (y)]

+ Ex∼PX(x)[log(1−DY (GX→Y (x)))], (1)

where discriminator DY attempts to find the best decision
boundary between real and converted features by maximiz-
ing this loss, and GX→Y attempts to generate a feature that
can deceive DY by minimizing this loss.

Cycle-consistency loss: The adversarial loss only re-
stricts GX→Y (x) to follow the target distribution and does
not guarantee the linguistic consistency between input and
output features. To further regularize the mapping, a cycle-
consistency loss is used:

Lcyc(GX→Y , GY→X)

= Ex∼PX(x)[‖GY→X(GX→Y (x))− x‖1]
+ Ey∼PY (y)[‖GX→Y (GY→X(y))− y‖1], (2)

where forward-inverse and inverse-forward mappings are si-
multaneously learned to stabilize training. This loss encour-
ages GX→Y and GY→X to find an optimal pseudo pair of
(x, y) through circular conversion, as shown in Fig. 1(a).

Identity-mapping loss: To further encourage the input
preservation, an identity-mapping loss is used:

Lid(GX→Y , GY→X) = Ey∼PY (y)[‖GX→Y (y)− y‖1]
+ Ex∼PX(x)[‖GY→X(x)− x‖1]. (3)

L1
Cycle-

consistency

Adversarial

loss

(a) One-step adversarial loss

L1

Cycle-

consistency

First

adversarial

loss
Second

adversarial

loss

(b) Two-step adversarial losses
(proposed)

Fig. 1. Comparison of objectives

Full objective: The full objective is written as

Lfull = Ladv(GX→Y , DY ) + Ladv(GY→X , DX)

+ λcycLcyc(GX→Y , GY→X) + λidLid(GX→Y , GY→X),
(4)

where λcyc and λid are trade-off parameters. In this formula-
tion, an adversarial loss is used once for each cycle, as shown
in Fig. 1(a). Hence, we call it a one-step adversarial loss.

2.2. Generator: 1D CNN

CycleGAN-VC uses a one-dimensional (1D) CNN [5] for
the generator to capture the overall relationship along with
the feature direction while preserving the temporal structure.
This can be viewed as the direct temporal extension of a
frame-by-frame model that captures such features’ relation-
ship only per frame. To capture the wide-range temporal
structure efficiently while preserving the input structure, the
generator is composed of downsampling, residual [38], and
upsampling layers, as shown in Fig. 2(a). The other notable
point is that CycleGAN-VC uses a gated CNN [34] to capture
the sequential and hierarchical structures of acoustic features.

2.3. Discriminator: FullGAN

CycleGAN-VC uses a 2D CNN [5] for the discriminator to
focus on a 2D structure (i.e., 2D spectral texture [39]). More
precisely, as shown in Fig. 3(a), a fully connected layer is
used at the last layer to determine the realness considering
the input’s overall structure. Such a model is called FullGAN.

3. CYCLEGAN-VC2

3.1. Improved Objective: Two-Step Adversarial Losses

One well-known problem for statistical models is the over-
smoothing caused by statistical averaging. The adversarial
loss used in Eq. 4 helps to alleviate this degradation, but the
cycle-consistency loss formulated as L1 still causes over-
smoothing. To mitigate this negative effect, we introduce an
additional discriminator D′X and impose an adversarial loss
on the circularly converted feature, as

Ladv2(GX→Y , GY→X , D
′
X) = Ex∼PX(x)[logD

′
X(x)]

+Ex∼PX(x)[log(1−D′X(GY→X(GX→Y (x))))]. (5)

Similarly, we introduce D′Y and impose an adversarial loss
Ladv2(GY→X , GX→Y , D

′
Y ) for the inverse-forward map-

ping. We add these two adversarial losses to Eq. 4. In this
improved objective, we use adversarial losses twice for each
cycle, as shown in Fig. 1(b). Hence, we call them two-step
adversarial losses.
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Fig. 3. Comparison of discriminator network architectures

3.2. Improved Generator: 2-1-2D CNN

In a VC framework [5, 27] (including CycleGAN-VC), a 1D
CNN (Fig. 2(a)) is commonly used as a generator, whereas
in a postfilter framework [39, 40], a 2D CNN (Fig. 2(b)) is
more preferred. These choices are related to the pros and cons
of each network. A 1D CNN is more feasible for capturing
dynamical change, as it can capture the overall relationship
along with the feature dimension. In contrast, a 2D CNN
is better suited for converting features while preserving the
original structures, as it restricts the converted region to local.
Even using a 1D CNN, residual blocks [38] can mitigate the
loss of the original structure, but we find that downsampling
and upsampling (which are necessary for effectively captur-
ing the wide-range structures) become a severe cause of this
degradation. To alleviate it, we have developed a network ar-
chitecture called a 2-1-2D CNN, shown in Fig. 2(c). In this
network, 2D convolution is used for downsampling and up-
sampling, and 1D convolution is used for the main conversion
process (i.e., residual blocks). To adjust the channel dimen-
sion, we apply 1×1 convolution before or after reshaping the
feature map.

3.3. Improved Discriminator: PatchGAN

In previous GAN-based speech processing models [39, 40, 5,
27], FullGAN (Fig. 3(a)) has been extensively used. How-
ever, recent studies in computer vision [41, 42] indicate that
the wide-range receptive fields of the discriminator require
more parameters, which causes difficulty in training. Inspired
by this, we replace FullGAN with PatchGAN [43, 41, 42]
(Fig. 3(b)), which uses convolution at the last layer and deter-
mines the realness on the basis of the patch. We experimen-
tally examine its effect for non-parallel VC in Section 4.2.

4. EXPERIMENTS

4.1. Experimental Conditions

Dataset: We evaluated our method on the Spoke (i.e., non-
parallel VC) task of the VCC 2018 [36], which includes
recordings of professional US English speakers. We se-
lected a subset of speakers so as to cover all inter-gender and
intra-gender conversions: VCC2SF3 (SF ), VCC2SM3 (SM ),
VCC2TF1 (TF ), and VCC2TM1 (TM ), where S, T, F, and M
indicate source, target, female, and male, respectively. In the
following, we use the abbreviations in the parenthesis (e.g.,
SF ). Combinations of 2 sources (SF or SM ) × 2 targets (TF
or TM ) were used for evaluation. Each speaker has sets of 81
(about 5 minutes; relatively few for VC) and 35 sentences for
training and evaluation, respectively. In the Spoke task, the
source and target speakers have a different set of sentences
(no overlap) so as to evaluate in a non-parallel setting. The
recordings were downsampled to 22.05 kHz for this chal-
lenge. We extracted 34 Mel-cepstral coefficients (MCEPs),
logarithmic fundamental frequency (logF0), and aperiodici-
ties (APs) every 5 ms by using the WORLD analyzer [44].

Conversion process: The proposed method was used to
convert MCEPs (Q = 34+1 dimensions including 0th coeffi-
cient).2 The objective of these experiments was to analyze the
quality of the converted MCEPs; therefore, for the other parts,
we used typical methods similar to the baseline of the VCC
2018 [36]. Specifically, in inter-gender conversion, a vocoder-
based VC method was used. F0 was converted by using log-
arithm Gaussian normalized transformation [45], APs were
directly used without modification, and the WORLD synthe-
sizer [44] was used to synthesize speech. In intra-gender con-
version, we used a vocoder-free VC method [46]. More pre-
cisely, we calculated differential MCEPs by taking the differ-
ence between the source and converted MCEPs. For a similar
reason, we did not use any postfilter [39, 40, 47] or powerful
vocoder such as the WaveNet vocoder [48, 49]. Incorporating
them is one possible direction of future work.

Training details: The implementation was almost the
same as that of CycleGAN-VC except that the improved
techniques were incorporated. The details of the network
architectures are given in Fig. 4. For a pre-process, we nor-
malized the source and target MCEPs to zero-mean and unit-
variance by using the statistics of the training sets. To stabi-
lize training, we used a least squares GAN (LSGAN) [50].
To increase the randomness of training data, we randomly
cropped a segment (128 frames) from a randomly selected
sentence instead of using an overall sentence directly. We
used the Adam optimizer [51] with a batch size of 1. We
trained the networks for 2× 105 iterations with learning rates
of 0.0002 for the generator and 0.0001 for the discriminator
and with momentum term β1 of 0.5. We set λcyc = 10 and
λid = 5. We used Lid only for the first 104 iterations to guide
the learning direction. Note that we did not use any extra
data, modules, or time alignment procedures for training.

2For reference, the converted speech samples, in which the pro-
posed method was used to convert all acoustic features (namely, MCEPs,
band APs, continuous logF0, and voice/unvoice indicator), are provided
at http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/
projects/cyclegan-vc2/index.html. Even in this challenging
setting, CycleGAN-VC2 works reasonably well.
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Table 1. Comparison of MCD [dB]
No. Method Intra-gender Inter-gender

CycleGAN-VC2 SF-TF SM-TM SM-TF SF-TMAdv. G D
1 1Step 2-1-2D Patch 6.86±.04 6.32±.06 7.36±.04 6.28±.04
2 2Step 1D Patch 6.86±.04 6.73±.08 7.77±.07 6.41±.01
3 2Step 2D Patch 7.01±.07 6.63±.03 7.63±.03 6.73±.04
4 2Step 2-1-2D Full 7.01±.07 6.45±.05 7.41±.04 6.51±.02
5 2Step 2-1-2D Patch 6.83±.01 6.31±.03 7.22±.05 6.26±.03
6 CycleGAN-VC [27] 7.37±.03 6.68±.07 7.68±.05 6.51±.05
7 Frame-based CycleGAN [28] 8.85±.07 7.27±.11 8.86±.27 8.51±.36

Table 2. Comparison of MSD [dB]
No. Method Intra-gender Inter-gender

CycleGAN-VC2 SF-TF SM-TM SM-TF SF-TMAdv. G D
1 1Step 2-1-2D Patch 1.60±.02 1.63±.05 1.54±.03 1.56±.04
2 2Step 1D Patch 3.31±.36 4.26±.37 2.04±.21 5.03±.32
3 2Step 2D Patch 1.57±.07 1.54±.01 1.46±.03 1.66±.07
4 2Step 2-1-2D Full 1.52±.02 1.56±.04 1.47±.01 1.67±.06
5 2Step 2-1-2D Patch 1.49±.01 1.53±.02 1.45±.00 1.52±.01
6 CycleGAN-VC [27] 2.42±.08 2.66±.08 2.21±.13 2.65±.15
7 Frame-based CycleGAN [28] 3.78±.26 2.77±.10 3.32±.06 3.61±.15

4.2. Objective Evaluation
As discussed in previous studies [7, 39], it is fairly complex
to design a single metric that can assess the quality of con-
verted MCEPs comprehensively. Alternatively, we used two
metrics to assess the local and global structures. To measure
global structural differences, we used the Mel-cepstral dis-
tortion (MCD), which measures the distance between the tar-
get and converted MCEP sequences. To measure the local
structural differences, we used the modulation spectra dis-
tance (MSD), which is defined as the root mean square er-
ror between the target and converted logarithmic modulation
spectra of MCEPs averaged over all MCEP dimensions and
modulation frequencies. For both metrics, smaller values in-
dicate that target and converted MCEPs are more similar.

We list the MCD and MSD in Tables 1 and 2, respec-
tively. To eliminate the effect of initialization, we report the
average and standard deviation scores over three random ini-
tializations. To analyze the effect of each technique, we con-
ducted ablation studies on CycleGAN-VC2 (no. 5 is the full
model). We also compared CycleGAN-VC2 with two state-
of-the-art methods: CycleGAN-VC [27] and frame-based
CycleGAN [28] (our reimplementation; we additionally used
Lid for stabilizing training). The comparison of one-step and
two-step adversarial losses (nos. 1, 5) indicates that this tech-
nique is particularly effective for improving MSD. The com-
parisons of generator (nos. 2, 3, 5) and discriminator (nos. 4,
5) network architectures indicate that they contribute to im-
proving both MCD and MSD. Finally, the comparison to the
baselines (nos. 5, 6, 7) verifies that by incorporating the three
proposed techniques, we achieve state-of-the-art performance
in terms of MCD and MSD for every speaker pair.
4.3. Subjective Evaluation
We conducted listening tests to evaluate the quality of con-
verted speech. CycleGAN-VC [27] was used as the baseline.

1
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M
O
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Fig. 5. MOS for naturalness with 95% confidence intervals
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Fig. 6. Average preference score (%) on speaker similarity

To measure naturalness, we conducted a mean opinion score
(MOS) test (5: excellent and 1: bad), in which we included
the target speech as a reference (MOS for TF and TM are
4.8). Ten sentences were randomly selected from the evalu-
ation sets. To measure speaker similarity, we conducted an
XAB test, where “A” and “B” were speech converted by the
baseline and proposed methods, and “X” was target speech.
We selected ten sentence pairs randomly from the evaluation
sets and presented all pairs in both orders (AB and BA) to
eliminate bias in the order of stimuli. For each sentence pair,
the listeners were asked to select their preferred one (“A” or
“B”) or to opt for “Fair.” Ten listeners participated in these lis-
tening tests. We show the MOS for naturalness and the pref-
erence scores for speaker similarity in Figs. 5 and 6, respec-
tively. These results show that CycleGAN-VC2 outperforms
CycleGAN-VC in terms of both naturalness and similarity
for every speaker pair. Particularly, CycleGAN-VC is diffi-
cult to apply to a vocoder-free VC framework [46] (used in
SF-TF and SM-TM ), as this framework is sensitive to con-
version error due to the usage of differential MCEPs. How-
ever, the MOS indicates that CycleGAN-VC2 works rela-
tively well in such a difficult setting.

5. CONCLUSION

To advance the research on non-parallel VC, we have pro-
posed CycleGAN-VC2, which is an improved version of
CycleGAN-VC incorporating three new techniques: an im-
proved objective (two-step adversarial losses), improved gen-
erator (2-1-2D CNN), and improved discriminator (Patch-
GAN). The experimental results demonstrate that CycleGAN-
VC2 outperforms CycleGAN-VC in both objective and sub-
jective measures for every speaker pair. Our proposed tech-
niques are not limited to one-to-one VC, and adapting them to
other settings (e.g., many-to-many VC [54]) and other appli-
cations [1, 2, 4, 3, 5] remains an interesting future direction.
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