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ABSTRACT

This paper presents a novel framework for providing high-

quality parallel voice conversion (VC) using a cyclic recurrent

neural network (RNN) and a finely tuned WaveNet vocoder.

Using the proposed system, we are tackling the quality degra-

dation issue faced by WaveNet when it is fed with estimated

(oversmoothed) speech features, such as mel-cepstrum pa-

rameters predicted from a statistical model. In VC, providing

predicted features to fine-tune a pretrained WaveNet model is

not straightforward owing to the difference in time-sequence

alignment. To overcome this problem, we propose the use of

a cyclic spectral conversion network that is capable of per-

forming a conversion flow, i.e., source-to-target, and a cyclic

flow, i.e., generate self-predicted target speaker features, and

is trained by using both the conversion and cyclic losses. The

experimental results demonstrate that, overall, the proposed

system significantly improves the converted speech, resulting

in a mean opinion score of 3.79 and a speaker similarity score

of 73.86%.

Index Terms— voice conversion, cyclic recurrent neural

network, WaveNet fine-tuning, oversmoothed parameters

1. INTRODUCTION

In a voice conversion (VC) framework [1], a conversion pro-

cedure is performed to transform the voice timbre, such as

the conversion of vocal-tract spectra and the prosody, such as

the transformation of fundamental frequency (F0) values. The

conversion of spectral features, such as mel-cepstrum (spec-

tral envelope) parameters [2], can be conveniently performed

through the use of a statistical data-driven feature mapping

model. Indeed, the development of statistical VC has been

proceeding rapidly, as shown by various related works, such

as through the use of Gaussian mixture model (GMM)-based

methods [1, 3] and neural-network-based methods [4, 5].

In this work, we focus on the use of a recurrent neural

network (RNN) for VC with parallel (paired) data. In recent

years, VC with nonparallel (unpaired) data has become one of

the main points of interest. Nevertheless, in many situations,

it is still viable to acquire a small amount of parallel data for

the development of a high-quality VC system. Therefore, it is

worthwhile to improve the framework of parallel VC systems.

In addition to the spectral conversion, in VC, another

essential aspect is the waveform generation step. It is

well known that the conventional vocoder-based method

for speech synthesizers has an inherent degradation prob-

lem [6], especially when using speech parameters predicted

by a statistical model, even when using a superior vocoder

system [7]. In a recent work [8], an alternative waveform

generation method based on a deep convolutional neural net-

work (CNN), the so-called WaveNet, was proposed. The

WaveNet vocoder [9, 10], conditioned on extracted speech

parameters such as spectral and excitation features, has been

proven to be capable of producing humanlike speech and has

become the state-of-the-art system. However, in VC [11], it

still suffers from quality degradation when using predicted

(oversmoothed) speech parameters.

In a text-to-speech (TTS) system [12], the degradation

problem of the WaveNet vocoder can be overcome by using

predicted features when developing the WaveNet model. In

VC, it is not straightforward to achieve this as there is a mis-

match of the time-sequence alignment. The method in [13]

ingeniously addresses this issue through the use of phonetic-

based (linguistic) intermediate features. In [14], the use of

data-driven linguistic-free intermediate features for VC with

a variational autoencoder was proposed. However, in prac-

tice, a large amount of data is required for training. In [15],

a parallel VC method that can be trained using a relatively

small amount of training data was proposed; such a method

uses a system of concatenated spectral conversions, i.e., of

target-to-source and source-to-target networks, to generate

self-predicted target features for finely tuning a pretrained

WaveNet model. The latter method, although simple and

promising, can be further improved, for example by reducing

the workload in training two separate models and by bridg-

ing the connection gap between the two disjointly trained

networks.

In this paper, inspired by the CycleGAN architecture [5],

we present a novel approach to improving a parallel VC sys-

tem, especially for a WaveNet fine-tuning framework [15], by
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proposing a VC with a cyclic spectral conversion model. The

proposed cyclic network is capable of performing two spec-

tral mapping flows, namely, a conversion flow, i.e., source-

to-target, and a cyclic flow, i.e., generate self-predicted target

features, and is trained using both the conversion and cyclic

losses. A pretrained WaveNet model is then fine-tuned in

accordance with the self-predicted target features generated

from the cyclic flow. The experimental results demonstrate

that, overall, the proposed system significantly improves both

the quality and accuracy of the converted speech, compared

with the use of conventional WaveNet fine-tuning, either with

natural features or with the features predicted from disjoint

networks.

2. BASELINE RNN-BASED VC FRAMEWORK WITH

WAVENET VOCODER

2.1. Spectral conversion network with RNN and nonlin-

ear autoregressive (AR) output

In [15], long short-term memory (LSTM)-based trajectory es-

timation [16] was proposed for spectral conversion by using

multiple linear autoregressive (AR) layers. In this paper, we

further improve the conversion network by using gated recur-

rent unit (GRU) [17] architecture, which is also capable of

modeling long-term context dependences, albeit with fewer

trainable model parameters, through the use of a nonlinear

AR output. The flow of the RNN-AR-based spectral conver-

sion is shown in Fig. 1.

Let xt = [xt(1), . . . , xt(D)]⊤ and yt = [yt(1), . . . , yt(D)]⊤

be the D-dimensional spectral feature vector of the input

speaker and that of the target speaker, at frame t, respec-

tively. Given a sequence of input spectral feature vectors

x = [x⊤

1
, · · · ,x⊤

T ]
⊤, a sequence of preprocessed feature

vectors f(x) = [f(x)⊤
1
, . . . , f(x)⊤T ]

⊤ is generated through

convolutional layers and then fed into a set of hidden-GRU

and AR-GRU blocks to compute both the hidden state and

the output ŷt for each frame t.

2.2. WaveNet vocoder

WaveNet is a deep AR-CNN used for modeling speech wave-

form samples [8]. In [9], the so-called WaveNet vocoder was

proposed, where each waveform sample is conditioned not

only by previous samples but also by auxiliary speech fea-

tures, such as spectral and excitation parameters. Given a se-

quence of auxiliary features h = [h1, . . . ,hT ]
⊤, the likeli-

hood of a sequence of waveform samples s = [s1, . . . , sT ]
⊤

is defined as

P (s|h) =

T∏

t=1

P (st|s1, s2, . . . , st−1,ht). (1)

By using a statistical VC model, such as the RNN-AR net-

work, to estimate spectral parameters, and then feeding them

to the WaveNet vocoder, we could generate a converted
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Fig. 1. Conversion network with hidden and AR GRU blocks

speech waveform from a source speaker into a particular

target speaker.

In a WaveNet model, a stack of dilated convolutional

layers is used to efficiently increase the number of receptive

fields. Each layer has a residual block comprising a 2× 1 di-

lated causal convolution with a gated activation function and

two 1 × 1 convolutions connected to either the next residual

block or skip connection. All skip connections are summed

and then fed to the output layer using the softmax function.

The gated activation function is

tanh(Uf,k ∗ s+V f,k ∗h
′)⊙σ(Ug,k ∗ s+V g,k ∗h

′), (2)

where U ∗ s denotes a dilated causal convolution, V ∗h′ de-

notes a 1×1 convolution, k is the layer index, f and g denote

“filter” and “gate”, respectively, and h′ denotes an upsampled

auxiliary feature vector sequence from an upsampling layer.

3. CYCLIC CONVERSION NETWORK FOR

FINE-TUNING OF WAVENET VOCODER

3.1. Problems of WaveNet fine-tuning with predicted fea-

tures

Conditioned on extracted speech parameters, a WaveNet

vocoder is capable of generating speech waveforms with nat-

ural quality [10]. However, by introducing oversmoothed

features, such as mel-cepstrum parameters estimated from

a statistical model, the quality of the converted waveform

will be significantly degraded [11]. This is because of the

mismatches between the natural parameters used in the train-

ing and the oversmoothed (estimated) parameters used in the

generation time.

In VC, providing oversmoothed parameters to develop a

WaveNet model is not straightforward owing to the difference

in time-sequence alignment. On the basis of [11], in [15], a

network structure capable of generating self-predicted target

features that can be used to fine-tune a pretrained WaveNet

model was proposed. The system is a simple concatena-

tion of two separately trained (disjoint) conversion networks,

namely, the target-to-source (TSmap) and source-to-target

(STmap) mappings, as shown in Fig. 2. This fine-tuning

procedure is capable of improving the converted speech qual-

ity compared with the fine-tuning of WaveNet with natural

features. However, the accuracy is still limited owing to the

connection gap between the two disjointly trained networks.

Note that in the conversion stage, only the STmap is used.
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Fig. 2. WaveNet fine-tuning with disjoint networks.

3.2. Proposed spectral conversion network training for

WaveNet fine-tuning

We propose an improvement to the network model used to

generate the self-predicted target features for the fine-tuning

of a WaveNet vocoder. Instead of developing two disjoint

conversion networks, which was the case in [15], the two

modules are trained within an integrated cyclic model by us-

ing two losses, i.e., the conversion (source-target) and the

cyclic (self-predicted target), as shown in Fig. 3. To gener-

ate the self-predicted target features, both the FROM target

mapping (FTmap), fed with the original target features, and

the INTO target mapping (ITmap) are used. In the conver-

sion stage, only the ITmap, fed with the source features, is

used. Note that, in the training, it is very important to use

a weighting constant for the cyclic loss owing to its strength

compared with the conversion loss so that the estimation of

self-predicted target features does not become too good com-

pared with the estimation of converted source-target features.

This cyclic conversion network addresses two problems

of the disjoint networks [15], i.e., it reduces the workload

in training two separate networks and addresses the unsyn-

chronized connection between the two separately trained

networks. Moreover, the proposed model can also be re-

garded as a multitask learning framework. This is because

both the FTmap and ITmap are optimized to improve the con-

version flow while maintaining a reasonable accuracy level

for the cyclic flow, i.e., through the use of the conversion and

weighted cyclic losses. Therefore, within this type of frame-

work, it is crucial to monitor the accuracy difference between

the converted features, i.e., from the conversion flow, and

the self-predicted features, i.e., those from cyclic flow. Note

that compared with the cyclic architecture with adversarial

networks (CycleGAN) [5], our proposed cyclic network is

more suitable for handling parallel data. This is because our

main objective is to improve the parallel VC system through

the use of a cyclic structure that can be easily optimized as it

does not have a discriminator, as in CycleGAN.
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Fig. 3. WaveNet fine-tuning with proposed cyclic network.

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions

To evaluate the proposed system, we used the speech dataset

provided in VCC 2018 [18], which consists of six female and

six male speakers, as well as an additional speech dataset

from the ARCTIC database, i.e., “bdl” (male) and “slt” (fe-

male), to train a multispeaker WaveNet model [10]. For the

spectral conversion networks, we used the “SF1” and “SM1”

data for the source speakers and “TF1” and “TM1” for the tar-

get speakers, where “F” means female and “M” means male.

The number of utterances for the VCC 2018 dataset was 81,

whereas that for the ARCTIC dataset was 1132. We used the

first 992 utterances of the ARCTIC dataset, as well as the

last 71 of the VCC 2018 dataset for the training data. The

remaining 140 utterances from the ARCTIC dataset and 10
utterances from the VCC 2018 dataset were used for the val-

idation data. The number of utterances in the evaluation set

used in the subjective evaluation was 35.

We used 35-dimensional mel-cepstrum coefficients in-

cluding the 0th power as the spectral envelope parameters,

which were extracted from the WORLD [19, 20] spectrum of

the speech signal. As the excitation and aperiodicity features,

we used framewise F0 values and two-band aperiodicity cod-

ing parameters, respectively, which were also extracted using

WORLD. To perform pitch conversion, we performed a linear

F0 transform based on the statistics of the speaker data. The

speech signal sampling rate was 22,050 Hz. The frame shift

was set to 5 ms.

The architecture and the set of auxiliary features for the

WaveNet model were exactly the same as that in [15]. A mul-

tispeaker WaveNet model was trained and then fine-tuned in

accordance with a particular target speaker, either convention-

ally, i.e., with natural spectral features, or with oversmoothed

features. On the other hand, For the spectral conversion mod-

els, we used one hidden GRU layer and one GRU output layer.

The number of GRU units was 1024. The convolutional in-

put layers were designed to capture the contexts of 4 preced-
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Table 1. MCD [dB] and LGD from the cyclic flow (Pred),

using training data, and from the conversion (Conv), using

validation, by the disjoint and the proposed cyclic networks.

DisjPred DisjConv CyclePred CycleConv

MCD 5.47 6.23 4.97 6.21

LGD 1.82 1.59 1.24 1.52

ing and 4 succeeding frames. A set of time-warping functions

for computing the conversion loss were computed beforehand

with dynamic time warping (DTW) algorithm after the re-

moval of silent frames. A global variance (GV) [3] postfilter

was not used for the WaveNet fine-tuning with the predicted

features, and from our preliminary experiment, it was found

to degrade the performance of the fine-tuning. The weight of

the cyclic loss was set to 10-7.

4.2. Objective evaluation

We computed the average values of the mel-cepstral distor-

tion (MCD) and the log-GV distance (LGD) between the

estimated and natural mel-cepstrum parameters. We com-

pared the disjoint networks (Disj), which are described using

the TSmap and STmap notations in Fig. 2, and the proposed

cyclic network (Cycle), which is described in Fig. 3 using the

FTmap and ITmap notations.

The results are shown in Table 1. The measurements

of self-predicted target features of training data, i.e., for

WaveNet fine-tuning, are denoted by Pred, whereas those of

the converted source-to-target features using validation data

are denoted by Conv. These results show that the proposed

cyclic network improves the accuracy of the self-predicted

target features within the training set (CyclePred) while still

maintaining the distance between CyclePred and the conver-

sion accuracy of the validation set (CycleConv). Ideally, in

the future, we would like to find the accuracy range of Pred

features compared to the Conv features that can be regarded

as not too good and not too bad.

4.3. Subjective evaluation

We also evaluated the converted speech waveforms 1 accord-

ing to their naturalness and their similarity to the natural

speech of the intended target. A five-scaled mean opinion

score (MOS) test was performed to assess the naturalness,

i.e., from 1 (completely unnatural) to 5 (completely natural).

For the speaker similarity test, listeners were given a pair of

audio stimuli consisting of a natural speech of a target speaker

and a converted speech of a source speaker, and asked to de-

termine whether they can be produced by the same speaker,

with the confidence of their decision, i.e., sure or not sure.

We compared the combination of conventional vocoder with

direct waveform modification [6, 21] and GV [3] (DiffGV),

our VC system in the VCC 2018 [22] (WNDiffGV), which

1Speech samples are available at http://bit.ly/2WTsbmR

Table 2. Result of MOS test for speech naturalness. ± de-

notes the 95% confidence interval of the sample mean. [·] de-

notes a sytem with a statistically significant lower value than

the highest value in each conversion category.

DiffGV WNDiffGV WNFT WNCycFT

All [2.53±0.14] [3.06±0.13] [3.38±0.14] 3.79±0.14

F-F [2.68±0.28] [3.18±0.27] 3.39±0.30 3.57±0.31

F-M [2.05±0.25] [2.84±0.30] [3.23±0.31] 3.82±0.27

M-F [2.66±0.25] [2.98±0.22] [3.14±0.26] 3.71±0.26

M-M [2.75±0.34] [3.25±0.26] 3.75±0.27 4.07±0.27

Table 3. Result of speaker similarity scores aggregated from

“same sure” and “same not-sure” decisions. [·] denotes a sys-

tem with a statistically significant lower value than the highest

value in each conversion category.

DiffGV WNDiffGV WNFT WNCycFT

All [37.50%] [57.39%] [63.64%] 73.86%

F-F [38.64%] [68.18%] 72.73% 79.55%

F-M [29.55%] [43.18%] [45.46%] 65.91%

M-F [34.09%] [50.00%] 63.64% 70.46%

M-M [47.73%] [68.18%] 72.73% 79.55%

was fine-tuned with natural features, the disjoint conversion

networks for WaveNet fine-tuning (WNFT) [15], and the

proposed cyclic network (WNCycFT), where the latter two

were fine-tuned with oversmoothed features. The number of

listeners was 11, none of which were native English speakers.

The two-tailed Mann–Whitney U test with α < 0.05 was used

to determine the statistical significance of the best system in

each conversion category.

The evaluation results for naturalness and speaker simi-

larity are given in Tables 2 and 3, respectively. These results

show that by fine-tuning the WaveNet vocoder using the self-

predicted target features generated from the proposed cyclic

conversion network (WNCycFT), the overall quality and ac-

curacy of the converted speech are significantly improved.

5. CONCLUSION

We have proposed a parallel VC framework using a cyclic

RNN-based spectral conversion to generate self-predicted tar-

get features used in the fine-tuning of a WaveNet vocoder.

The experimental results demonstrate that the proposed sys-

tem significantly improves both the quality and accuracy of

the converted speech, resulting in a mean opinion score of

3.79 and a speaker similarity score of 73.86%. In future work,

we will extend the proposed concept to a nonparallel VC.
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