
CROSS-LINGUAL VOICE CONVERSION WITH BILINGUAL PHONETIC
POSTERIORGRAM AND AVERAGE MODELING

Yi Zhou1, Xiaohai Tian1, Haihua Xu2, Rohan Kumar Das1 and Haizhou Li1

1Department of Electrical and Computer Engineering, National University of Singapore, Singapore
2Temasek Laboratories, Nanyang Technological University, Singapore

ABSTRACT

This paper presents a cross-lingual voice conversion approach
using bilingual Phonetic PosteriorGram (PPG) and average
modeling. The proposed approach makes use of bilingual
PPGs to represent speaker-independent features of speech sig-
nals from different languages in the same feature space. In
particular, a bilingual PPG is formed by stacking two mono-
lingual PPG vectors, which are extracted from two mono-
lingual speech recognition systems. The conversion model
is trained to learn the relationship between bilingual PPGs
and the corresponding acoustic features. To leverage the lin-
guistic and acoustic information from other speakers in dif-
ferent languages, an average model is trained with multiple
speakers in both source and target languages. I-vector is uti-
lized as an additional input feature of the average model for
network adaptation. Experiments are performed for intralin-
gual and cross-lingual voice conversion between English and
Mandarin speakers. Both objective and subjective evaluations
demonstrate the effectiveness of our proposed approach.

Index Terms— cross-lingual, voice conversion, Phonetic
PosteriorGram (PPG), average modeling approach (AMA)

1. INTRODUCTION

Voice conversion (VC) aims to modify the speech of one
speaker (source) to make it sound as if it were spoken by
another speaker (target). Most of existing VC techniques are
designed for intralingual conversions given parallel training
data, where the source and target speakers speak the same
text in the same language. A number of models have been
established to realize the spectral feature mapping from the
source to target, such as Gaussian mixture models [1, 2],
neural network based methods [3–8], frequency warping
methods [9–12], exemplar based methods [13–16] and so on.

In cross-lingual voice conversion, the phonetic systems of
source and target languages are different, and parallel training
data is not possible. Therefore, cross-lingual voice conver-
sion is a more challenging task than intralingual conversion.
In [17, 18], a bilingual conversion model is trained on par-
allel data of the target language, which requires the source
speaker to speak both source and target languages. However,

in practice, a bilingual source speaker is not always avail-
able. Non-parallel alignment techniques are hence developed
to find source-target frame pairs from non-parallel utterances,
for instance, unit selection [19, 20] and the iterative frame
alignment methods [21,22]. But the conversion performances
are moderate due to their inaccurate alignments [22]. Alter-
natively, vocal tract length normalization based phone map-
ping approaches are developed [23, 24], where the warping
functions are estimated between the closest phone or acous-
tic classes between the source and target speech. Recently, a
Phonetic PosteriorGram (PPG) based cross-lingual VC tech-
nique [25] has been reported, which makes use of monolin-
gual PPGs as speaker-independent features to bridge across
speakers and language boundaries. Nevertheless, PPGs of one
language cannot effectively characterize the phonetic contents
of another language owing to the fact that different languages
have distinct phone sets.

In this paper, we propose to use bilingual PPGs for cross-
lingual VC with an average modeling approach (AMA).
Bilingual PPGs are formed by stacking two monolingual
PPG vectors, which are extracted from two automatic speech
recognition (ASR) systems trained in source and target lan-
guages, respectively. Then the conversion model is trained
to map bilingual PPGs to the acoustic features. As the target
speech only contains monolingual information, it is not able
to fully describe the linguistic and acoustic information of
another language. To address this problem, a cross-lingual
AMA is employed to capture both linguistic and acoustic
information from different languages. In this way, the pro-
posed method is expected to perform cross-lingual VCs in
both directions between the source and target languages.

2. CROSS-LINGUAL VOICE CONVERSION WITH
MONOLINGUAL PPG

Phonetic PosteriorGram (PPG) is a time-versus-class vec-
tor that represents the posterior probabilities of phonetic
classes for a specific time frame [25]. PPG is estimated from
an ASR system, which is trained by a large multi-speaker
database. As the output of an ASR system is designed to
be invariant with different speakers, the extracted PPGs are
considered as speaker independent [26]. Small speech seg-
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Fig. 1. Block diagram of (a) training and (b) conversion workflows of the cross-lingual VC system with monolingual PPGs.

ments like frames can be shared in different languages [24],
hence frame-level PPGs are also believed to be language
independent. Due to their speaker-independent and language-
independent properties, PPGs have been successfully applied
for cross-lingual [25] voice conversion.

2.1. Methodology

Fig. 1(a) presents the framework of monolingual PPG based
cross-lingual VC. During training, monolingual PPGs
X ∈ RDm×N and their corresponding Mel Cepstral Coef-
ficients (MCCs) Y ∈ RDa×N are first extracted for the target
speaker. N denotes the number of frame, Da and Dm denote
the dimensions of acoustic features and monolingual PPGs,
respectively. Then, the conversion model F (·) is trained
between monolingual PPGs and MCCs as

Y = F (X) + e (1)

where e is the error between predicted MCCs and the ground
truth. In particular, the ASR adopted for PPG extraction is
trained in the same language with the target speech.

Fig. 1(b) shows the conversion process. Given a source
speech in a different language, we first use the same ASR to
extract monolingual PPGs, denoted as X′ ∈ RDm×N . Then,
the extracted PPGs are used as input to the conversion model
to predict the converted MCCs Ŷ ∈ RDa×N as

Ŷ = F (X′). (2)

The converted speech is then reconstructed with converted
fundamental frequency (F0), source aperiodic component
(AP) and the generated MCCs.

2.2. Limitation

Although monolingual PPG works properly for cross-lingual
VC, the phonetic information represented by it of one lan-
guage is inaccurate for another language. As a result, the con-
verted voice is unnatural and biased to one language. More-
over, it is noted that the monolingual PPG based VC sys-
tem is mainly designed for one-direction conversions from the
source language to the target language [25], but not suitable
for conversions in both directions.

3. CROSS-LINGUAL VC WITH BILINGUAL PPG
AND AVERAGE MODELING

In this section, we introduce bilingual PPG and average mod-
eling as a solution to cross-lingual VC.

3.1. Cross-lingual VC with bilingual PPG

To capture accurate phonetic information of both source and
target languages, bilingual PPGs are introduced for cross-
lingual VC. During training, as shown in Fig. 2(a), monolin-
gual PPGs, Xen ∈ RDen×N , Xcn ∈ RDcn×N , are extracted
by two ASR systems (English and Mandarin). The bilingual
PPG is then formed by stacking the monolingual PPGs, de-
noted as X = [Xen

T,Xcn
T]T. We have Den and Dcn to in-

dicate the dimensions of English and Mandarin PPGs. Then,
a conversion model is trained to learn the feature mapping
between bilingual PPGs and MCCs as described in Section 2.

At run-time, as shown in Fig. 2(b), we first extract bilin-
gual PPGs from the source speech and then transform the ex-
tracted bilingual PPGs to MCCs according to Eq. (2).

3.2. AMA with bilingual PPG

To leverage both linguistic and acoustic information of dif-
ferent languages (e.g. English and Mandarin), an average
model trained with multiple speakers from both languages is
employed. We present the i-vector as part of the input fea-
tures by augmenting it to the PPG features for average model
adaptation. For speaker k, the input features are represented
as [Xen,k

T,Xcn,k
T, Ik]

T with Ik denoting the i-vector. The
training and conversion details can be found in [27].

4. EXPERIMENT

4.1. Database and Feature Extraction

We chose 10 English speakers (5 male and 5 female) from
VCC2016 database [28] and 10 Mandarin speakers (5 male
and 5 female) from a Mandarin average model database 1

for average model training. Each speaker consisted of 162

1http://www.data-baker.com/hc_pm_en.html
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Fig. 2. Block diagram of (a) training workflow and (b) conversion workflow of the proposed system with bilingual PPGs.

utterances. For testing, 2 English speakers TF1, TM1 from
VCC2018 database [29] and 2 Mandarin speakers 14M, 16F
from the same Mandarin database were used, with 20 sen-
tences from each speaker. All of the selected speakers are
native and monolingual.

Both DNN-HMM ASR models were trained using the
Kaldi toolkit [30]. The English and Mandarin ASR sys-
tems were trained on Wall Street Journal (WSJ) [31] and
Aishell [32] corpus, respectively. The English ASR con-
sisted of 5 hidden layers of 1024 units in each layer, and a
soft-max output layer of 132 units, while the Mandarin ASR
consisted of 6 hidden layers with 2048 units in each layer,
and a soft-max output layer of 209 units.

With all speech signals sampled at 16kHz, the WORLD
vocoder [33] was used to extract the spectrum (513-dim), AP
(1-dim), and F0 (1-dim), after which we used the Speech
Signal Processing Toolkit 2 to compute the 40-dimensional
MCCs. The i-vector dimension was fixed as 150 after apply-
ing linear discriminant analysis.

4.2. Experiment Setup

Three different systems were implemented for comparison:

• M-PPG: the cross-lingual VC system with monolin-
gual PPG as described in Section 2.1, and we bench-
mark it as our baseline. Two English and two Mandarin
conversion models were trained for the target speakers
SF1, SM1, 01F and 07M. For each system, 150 and 12
utterances were used for training and validation. The
input features of English and Mandarin systems had
132 and 209 dimensions, respectively.

• B-PPG: the proposed bilingual PPG VC system as in
Section 3.1. Similarly, two English models and two
Mandarin models were trained with bilingual PPG on
the same data. The input features had 341 dimensions.

• B-PPG-AMA: the proposed VC system with bilingual
PPG and average modeling. Two gender-dependent

2https://sourceforge.net/projects/sp-tk/

average models were trained, and each model had 10
speakers (5 English and 5 Mandarin). In total, one av-
erage model used 1500 sentences for training and 120
sentences for validation. Each speaker’s i-vector was
obtained from his own 150 training speech samples as
described in Section 3.2. Both average models were
trained with 491-dimensional input feature vectors.

All models were trained with Merlin toolkit [34] using
the same settings: two DBLSTM layers of 256 hidden units
in each layer, 25 minibatch size, 0.9 momentum and 0.002
learning rate. The network had a common output of 127-
dimensional features including MCCs (40-dim), log F0 (1-
dim), AP (1-dim) with their delta and delta-delta coefficients,
and the voiced/unvoiced flag (1-dim).

During conversion, APs were directly copied from source
speech, while F0 was converted by a global linear transfor-
mation in log-scale [35]. The MCCs were generated by Max-
imum Likelihood Parameter Generation algorithm [36]. A
post-filtering in the cepstral domain was employed to further
enhance the speech quality.

4.3. Evaluations

We conducted both objective and subjective evaluations.
Since the reference speeches were not available for cross-
lingual VC, we only report the intralingual VC results for
objective evaluation. The subjective tests were conducted to
evaluate both intralingual and cross-lingual VCs.

4.3.1. Objective Evaluation

The Mel-Cepstral Distortion (MCD) was used as an objective
measure of the spectral distance between the converted and
target speeches. It can be calculated by the equation:

MCD[dB] = 10/ln10

√√√√2

Da∑
d=1

(Ŷd − Yd)2, (3)

where Da is the dimension of MCCs, Ŷd and Yd are the dth

coefficients of the corresponding converted and target MCCs,
and the lower value accounts for a smaller distortion.
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The objective results are presented in Fig. 3. It is observed
that monolingual PPG is only effective on the conversion of
its corresponding language. For example, in EN2EN conver-
sion, M-PPG-EN outperforms M-PPG-CN with the MCDs of
6.486 and 7.99, respectively. The results also suggest that
our proposed B-PPG outperforms M-PPG-EN and M-PPG-
CN in both EN2EN and CN2CN conversions, which demon-
strate the proposed B-PPG can capture more detailed phonetic
characterization information for intralingual VC.

4.3.2. Subjective Evaluation

The Mean Opinion Score (MOS) and ABX preference test
were conducted for subjective evaluations on both intralingual
and cross-lingual VCs. 24 listeners, including 12 Mandarin
and 12 English, participated all the tests. For each test, 12
sentences were randomly selected from each system.
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In the MOS test, listeners were asked to rate the quality
and naturalness of the converted speech on a 5-point scale.
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Fig. 6. ABX preference test results for speaker similarity with
95% confidence intervals, N/P stands for no preference. (a)
M-PPG vs. B-PPG; (b) M-PPG vs. B-PPG-AMA; (c) B-PPG
vs. B-PPG-AMA.

Fig. 4 shows the MOS results for intralingual VC. We ob-
serve that the proposed B-PPG and B-PPG-AMA outperform
the M-PPG baseline, but the difference is not statistically sig-
nificant. While in Fig. 5, our proposed B-PPG and B-PPG-
AMA significantly outperform M-PPG for cross-lingual con-
versions. The results indicate VCs, especially cross-lingual
VCs, clearly benefit from bilingual PPG, as they can effec-
tively capture the phonetic classes in two languages.

In ABX preference test, X was the reference target speech.
Listeners were asked to choose which one was more similar
to X given converted samples A and B from different systems.

Shown in Fig. 6(a) and Fig. 6(b), both B-PPG and B-PPG-
AMA significantly outperform M-PPG in terms of speaker
similarity. Then we compare our proposed B-PPG with B-
PPG-AMA. The results are shown in Fig. 6(c), which sug-
gest that the converted speech of B-PPG-AMA achieves bet-
ter performances than that of B-PPG regarding to the speaker
similarity, though the difference is not statically significant.

Both quality and similarity tests demonstrate the effec-
tiveness of proposed bilingual PPG and average modeling for
intralingual and cross-lingual voice conversions. The con-
verted samples can be found on this website 3.

5. CONCLUSION
This paper presents the cross-lingual voice conversion tech-
niques based on bilingual PPG and average modeling. By
using bilingual PPGs to represent the phonetic contents, in-
put linguistic information performs more robust across differ-
ent languages. Additionally, the average modeling approach
further enhances the cross-lingual conversion performances.
Experimental results confirm that our proposed methods out-
perform the baseline system in terms of both speech quality
and speaker similarity. Last, our proposed methods are suit-
able for conversions in either direction of two languages.
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