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ABSTRACT

Although narrowband (NB) and wideband (WB) speech data
primarily differ in sampling rate, these two common input
sources are difficult to simultaneously model for automatic
speech recognition (ASR). Meanwhile, cycle consistent gen-
erative adversarial networks (CycleGANs) have been shown
value in a number of acoustic tasks such as mapping between
domains due to their powerful generators. We apply Cycle-
GAN to the task of bandwidth extension (BWE) and test a
variety of architectures. The CycleGANs produce encourag-
ing losses and reconstructed spectrograms. In order to further
reduce word error rates (WER) we add an additional discrim-
inative loss to the CycleGAN BWE architecture. This more
closely matches our ASR goal and we show gains in WER
compared to a standard BWE model discriminatively trained
only to map from upsampled narrowband (UNB) to WB data.

Index Terms— speech recognition, deep neural net-
works, bandwidth extension, cycle consistent generative ad-
versarial networks, acoustic modeling

1. INTRODUCTION

Narrowband (NB) and wideband (WB) data speech data dif-
fer primarily in the sampling rate. However, their spectral
characteristics are distinct enough that it is difficult to train an
automatic speech recognition (ASR) model that handles both
these domains simultaneously. Training in only one domain
and then upsampling or downsampling input data accordingly
does not yield sufficient accuracy. That is, training a WB ASR
model and then upsampling NB data, or conversely, training
a NB ASR model and then downsampling WB data is insuf-
ficient. The goal is to have one model that is capable of han-
dling both domains.

In this paper we propose a bandwidth extension (BWE)
model that is trained using a cycle consistent generative ad-
versarial network (CycleGAN). CycleGANs have increased
in popularity recently due to their gains in a variety of tasks
in vision and speech. CycleGANs jointly train two powerful
generators one mapping from domain A to domain B and the
other mapping from domain B to domain A. Moreover, they
impose a cycle loss such that the composition of each map is

close to the original input data. CycleGANS are thus able to
better take advantage of both domains and the joint training of
the generators often leads to better results than simply train-
ing a single mapping one direction between two domains. We
train CycleGAN for the BWE task and show that the recon-
struction losses and spectrograms indeed look promising.

Typical BWE techniques rely on minimizing a reconstruc-
tion error such as minimum mean square error, L1, or L2
loss. However, since the goal is to improve ASR word error
rates (WER), we also explore using a discriminative loss[1].
We train a standard BWE model using this discriminative
loss. We compared this to a CycleGAN trained using stan-
dard losses in addition to the discriminative loss. This helps
guarantee the performance of the BWE more closely matches
the goal of improving WER.

The paper is organized as follows. Section 2 discusses
related work on CycleGANS and BWE. Section 3 gives the
mathematical formulation of CycleGANs and BWE. Section
4 provides details on the model architecture and system con-
figurations. Experimental results are provided in section 5.
Lastly a summary is given in section 6.

2. RELATED WORK

CycleGANS first found use in vision mapping between two
domains of images, such as horses and zebras, and pictures
and paintings [2]. Since then they have been used in a variety
of vision and speech tasks. For example [3] explored map-
ping noisy to clean data as well as accented data. In [4] [5]
the authors explored using CycleGANs for gender mapping.
CycleGANs have even been used for dereverberation [6].

BWE is a still evolving field of inquiry in speech and sig-
nal processing. NB speech signals, i.e. telephony speech
signals, suffer from degraded quality due to the lack of
high frequency spectral information eliminated by the low-
pass band limitation of communication channels. Many
researchers have studied BWE in order to improve quality
and intelligibility[7, 8, 9, 10, 11, 12]. The goal of BWE is to
estimate the missing high frequency spectral components and
thus “extend” the bandwidth of the signal. We do acknowl-
edge there are additional spectral changes because of channel
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Model Data WER
CNN WB WB 14.5%
— UNB 19.8%
— UNB + BWE 16.4%
CNN NB NB 15.9%
CNN UNB WB 19.2%
— UNB 16.5%

Table 1. WER for acoustic models trained on WB, UNB, and
NB data. Model name “CNN WB” means a CNN acoustic
model trained on WB data, etc. Second column “Data” spec-
ifies the test data where “UNB + BWE” means UNB passed
through a discriminatively trained BWE model.

effects, but these will not be addressed in this paper and we
leave to future work.

In this work we explore using a variety of neural networks
structures for CycleGANs for BWE. Specifically we study
CNNs, LSTMs, and Residual Networks for CycleGAN BWE
as well as exploring the parameter space. Moreover, we ana-
lyze adding a discriminative loss based on a trained acoustic
model to further improve the WER.

3. BANDWIDTH EXTENSION & CYCLEGAN

3.1. CycleGAN

CycleGANs are a set of models which learns a mapping be-
tween two domains A and B, in our case upsampled nar-
rowband (UNB) and WB data [2]. There are two generators
GA→B and GB→A which map from A to B and B to A re-
spectively. Additionally there are two discriminators DA and
DB whose role is to distinguish a true sample from A versus
a fake and a true sample from B versus a fake respectively.
The generator GA→B is trained such that the distribution of
features pb(b) is indistinguishable from the “fake” features
GA→B(a), and similarly for the generatorGB→A and the dis-
tribution pa(a). The adversarial relationship of the generator
to the discriminator is given by

min
GA→B

max
DB

Ea∼pa(a)[logDB(t)]+

Eb∼pb(b)[log(1−DB(GA→B(a)))].

In their original form [2], the discriminators were trained
to output a probability that the input data was from the true
domain. However, others found that such discriminators lead
to stability problems during training and suggested to use the
Earth-Mover or Wasserstein-1 distance, which is roughly the
minimum cost of transporting mass in order to transform two
distributions[13, 14]. The discriminators are constrained to be
1-Lipshitz by enforcing that their gradients close to 1. Recall
that a continuous function f is L-Lipshitz if |f(x1)−f(x2)| ≤
L|x1 − x2| ∀x1, x2 [15]. Thus the WGAN loss is defined as

LWGAN (GA→B , DB) = Eb∼pb(b)[DB(b)]

− Ea∼pa(a)[DB(GA→B(a)]

− βEb̃∼pb(b̂)[(||∆b̂DB(b̂)||2 − 1)2]

− βEã∼pa(â)[(||∆âDA(â)||2 − 1)2],

where the last two terms are the gradient penalty and b̃ :=
αt + (1 − α)GA→B(a) such that α ∼ U(0, 1), a ∼ pA(a),
and t ∼ pB(t). We define ã similarly.

The key to CycleGAN’s success is the cycle consistency
loss which ensures that the composition of the generators
yields a feature close to the original feature. Specifically we
have

Lcyc := Ea∼pa(a)[||GA→B(GB→A(a))− a||1]

+ Eb∼pb(b)[||GB→A(GA→B(b))− b||1].

Thus, summing LWGAN (GA→B , DB),
LWGAN (GB→A, DA), andLcyc, we can train the CycleGAN
by alternating between updating the discriminators and then
the generators.

3.2. Bandwidth Extension

BWE techniques typically are based on minimizing a recon-
struction error such as the minimum mean square error, L1,
or L2 loss. For example

θ∗ = arg min
1

n

n∑
i=1

||yi − fθ(x)||22

where xi is the WB data, yi is the NB data, and fθ is the
BWE mapping. However, since our task is ASR classification
we can further specialize the BWE loss. Given a trained WB
acoustic model, we can discriminatively train a BWE network
to minimize the cross entropy of mapped NB data with respect
to the trained WB acoustic model. That is, we pass the NB
data through the BWE model to be trained, then pass that data
through the fixed WB acoustic model. From there we take
the cross-entropy between this and the label. Discriminative
BWE is discussed in detail in [1].

4. IMPLEMENTATION

4.1. Features

The sample rate of the WB speech and NB speech is 16KHz
and 8KHz respectively. From the speech data[16], 40-
dimensional logmel features are extracted and then a global
cepstral mean normalization (CMN) followed by an utterance-
based CMN is applied. We compute the static logmel fea-
tures, as well as their delta and double deltas and input those
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Model WER
Discriminative
Loss UNB

Discriminative
Loss WB

Cycle Loss
UNB

Cycle Loss
WB

Identity Loss
UNB

Identity Loss
WB

Resnet 18.1% 0.120 0.074 0.038 0.060
Resnet(disc) 16.1% 0.85 1.06 0.110 0.068 0.035 0.054
LSTM(disc) 16.3% 0.87 1.08 0.108 0.118 0.056 0.042
CNN(disc) 20.7% 1.28 1.53 0.290 0.261 0.127 0.137

Table 2. Word Error Rate (WER) and losses for the BWE task using CycleGAN trained networks. Reported are the discrimina-
tive loss, cycle loss, and identify loss. Cycle Loss UNB is the L1 loss of the a UNB sample mapped to WB then mapped back
to UNB using the generators versus its input data. Identify Loss UNB is the L1 loss of a UNB sample UNB passed through the
map from WB to UNB versus its input data.

into the CMNs. Lastly we provide a temporal context of 11
frames. The UNB speech signals are passed through the WB
Mel filter banks after upsampling in the time domain, which
gives rise to zeros in the outputs of the upper Mel filter bins
(the zero-padding effect).

4.2. GAN models

Multiple network structures were explored, but we only
present three here. First, a Resnet similar to [2] and [3]
was trained. For convention we will write a convolutional
layer with kernel k, stride s, and input channels i, and output
channels o as conv_kxk_sxs_ixo. The model Resnet9
consists of conv_3x3_1x1_3x32, leaky relu with slope
0.2 (LRelu), conv_3x3_2x2_32x64, LRelu, instance
normalization (IN), conv_3x3_2x2_64x128, LRelu, IN.
Next is a series of 9 residual blocks. Each residual block
is composed of conv_3x3_1x2_128x128, LRelu, IN,
conv_3x3_1x1_128x128, LRelu, IN, with a residual
connection. Following, the 9 residual blocks is a 3x3 de-
convoluational layer with stride 2x2 input channels 128 and
output channels 64 deconv_3x3_2x2_128x64, LRelu,
IN, deconv_3x3_2x2_63x32, LRelu, IN,
conv_3x3_1x2_32x3. Additionally, the Resnet network
was modified to only map to the upper 9 bands of the feature
space. 1

The second generator network explored was a CNN
model. This CNN consists of 4 convolutional layers, 2 max-
pooling layers and 3 fully connected (FC) layers. Every 2
convolutional layers are followed by one max-pooling layer.
The first 2 convolutional layers use 3x3 kernels with a stride
1x1 and padding 1x1. The second 2 convolutional layers
again use 3x3 kernels with a stride 1x1 and padding 1x1. The
2 max-pooling layers use 2x2 kernels with a stride 1x1. The
3 FC layers have 1, 024 hidden units. All activation func-
tions are Relu except the last FC layer which uses tanh. The
first two convolutional layers have 128 feature maps, and the
second two convolutional layers have 256 feature maps.

Thirdly, we explored as generators a bidirectional LSTM
with 4 layers and 512 hidden units followed by a FC layer to

1We did explore mapping to the entire feature space, but this led to non-
optimal performance.

reconstruct a feature of the correct input dimension. As in the
case of the Resnet above, we design the LSTM architecture to
only map to upper 9 bands.

For the discriminator networks we used
conv_3x3_1x1_1x64, LRelu, conv_3x3_2x2_64x128,
LRelu, followed by a FC layer with 512 nodes, LRelu, a FC
layer with 512 nodes, LRelu, and a FC layer with 1 node.

4.3. Acoustic Models

CNN acoustic models are used for WB baseline, and NB
baseline, which have the same configuration. There are 2
convolutional layers and each convolutional layer is followed
by a max-pooling layer. The first convolutional layer uses
5x5 kernels with a stride is 1x1 and padding 2x2. The second
convolutional layer uses the same kernel, stride and padding
sizes as those of the first convolutional layer. Both max-
pooling layers use a kernel of 2x2 and stride of 2x2. On top
of the convolutional and pooling layers are 3 FC layers with
1, 024 hidden units. All activation functions are Relu except
the last FC layer which uses sigmoid. The output softmax
layer has 9, 300 output units. The first two convolutional
layers have 128 layers, while the second two convolutional
layers have 256 layers.

4.4. Standard Unidirectional BWE Model

A direct BWE mapping network is constructed which only
maps UNB to WB using the discriminative loss described in
Subsection 3.2. This BWE is modeled exactly as the CNN
described in Subsection 4.2

5. EXPERIMENTAL RESULTS

5.1. Baseline

For our experiments we used a 50hr subset of Broadcast News
data which is provided at a 16KHz sampling rate[16]. We
downsampled the data to 8KHz then upsampled to create cor-
responding UNB training and test sets. Baseline acoustic
models described in 4.3 were trained on the WB, NB, and
UNB data. We can see in Table 1 that domain mismatch for
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(a) Upsampled Narrowband test data

(b) True Wideband test data

(c) Resnet CycleGAN UNB to WB without disc loss

(d) Resnet CycleGAN UNB to WB with disc loss

(e) LSTM CycleGAN UNB to WB with disc loss

(d) CNN CycleGAN UNB to WB with disc loss

Fig. 1. Logmel spectrograms of UNB data versus CycleGAN
BWE models trained with discriminative loss.

the UNB trained acoustic model leads to a 2.7% degradation
in WER, and for the WB trained acoustic model leads to a
5.3% degradation.

5.2. GAN

We trained three GAN models, each with a different gener-
ator networks: Resnet, LSTM, and CNN. Following recipes
in [13, 14] we trained the discriminators DA and DB 4
times before updating the generators GA→B and GB→A.
Recall that the discriminators are trained to maximize the
loss L(GA→B , GB→A, DA, DB), while the generators are
trained to minimize said loss. We also added an addi-
tional identity constraint λLidA = ||GA→B(b) − b||1 and
λLidB = ||GB→A(a) − a||1. For loss coefficients we set

the cycle loss coefficient α to 10.0, the WGAN gradient
coefficient β to 100.0, and the identity loss coefficient λ to
0.5

We report the model type, number of steps and losses for
our CycleGAN networks in Table 2. Recall that the Resnet
and LSTM only generate the upper 9 bands of the 40 logmel
features. We found this performed better than generating the
entire band using Resnet or LSTM. We explored many other
network structures and parameter selections, but only present
a few here. We note a WER of 18.1% for the Resnet model
that had no acoustic discriminative training. This improves
over simply using the UNB by 1.8% absolute as shown in Ta-
ble 1. Moreover the cycle losses and identity losses converge.
We show the logmel spectrogram of a test example in Figure
4.1. We can see in subfigure (c) that this Resnet is beginning
to learn to fill in the upper band.

Since our desire is to improve ASR accuracy we next
added the acoustic discriminative loss to the cycleGAN gener-
ators and assign a coefficient 100.0 to this loss. Additionally,
a BWE model which only maps UNB data to WB data was
discriminatively trained using the loss described in subsection
3.2. We will refer to this as the standard BWE model. For the
discriminative loss the two previously trained WB and UNB
models were used to generate labels for the training data.
WER are given in Table 1. The standard BWE model gives
a WER of 16.4% and thus improves 3.4% absolute. We see
in Table 2 that the Resnet is able to outperform the standard
BWE and achieve a WER of 16.1% on the BWE task. The
LSTM is able to outperform the standard BWE and achieve a
WER of 16.3% WER on the BWE task. See Figure 4.1.

6. SUMMARY

Creating unified acoustic models able to handle diverse do-
mains is crucial for modern ASR systems. For the NB vs WB
mismatch problem previous works have used BWE which
maps solely from one domain to another, typically using re-
gression losses such as minimum mean square error. Cycle-
GANs present machinery capable of utilizing mappings from
both UNB to WB as well as WB to UNB. Combined with
the addition of the discriminative loss, we have shown Cycle-
GANs are better able to handle BWE over a standard model.

We explored dozens of CycleGAN configurations during
the process of writing this paper, but have only scratched the
surface of possibilities of these models. Specifically, we plan
to explore more network configurations and parameter selec-
tion. Moreover, the LSTM model showed particular promise
visually and with other losses and we hope to reconcile this
with improved WER in the future.
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