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ABSTRACT

Data augmentation is crucial to improving the performance of
deep neural networks by helping the model avoid overfitting
and improve its generalization. In automatic speech recogni-
tion, previous work proposed several approaches to augment
data by performing speed perturbation or spectral transforma-
tion. Since data augmented in this manner has similar acous-
tic representations as the original data, it has limited advan-
tage in improving generalization of the acoustic model. In
order to avoid generating data with limited diversity, we pro-
pose a voice conversion approach using a generative model
(WaveNet), which generates a new utterance by transform-
ing an utterance to a given target voice. Our method syn-
thesizes speech with diverse pitch patterns by minimizing the
use of acoustic features. With the Wall Street Journal dataset,
we verify that our method led to better generalization com-
pared to other data augmentation techniques such as speed
perturbation and WORLD-based voice conversion. In addi-
tion, when combined with the speed perturbation technique,
the two methods complement each other to further improve
performance of the acoustic model.

Index Terms— speech recognition, data augmentation,
voice conversion, wavenet

1. INTRODUCTION

As the capacity of deep neural networks (DNNs) increases,
large training dataset with rich patterns becomes more impor-
tant. However, it is expensive and time consuming to build
labeled dataset. One common strategy to deal with this prob-
lem is data augmentation (DA), which increases the quantity
of training data by adding transformed samples that preserve
the original labels. The most common DA approaches in au-
tomatic speech recognition (ASR) include speed perturbation
[1] and vocal tract length perturbation (VTLP) [2]. However,
the speech data generated from these methods have limited
diversity as their acoustic features resemble the original ones.

Thus, we propose a novel method using a generative
model to increase diversity in synthetic data. Specifically
we propose VC-WaveNet, a voice conversion (VC) tech-
nique using WaveNet [3] as a generative model. VC refers to
transforming an original utterance into a new utterance that

resembles the voice of a target speaker while preserving the
linguistic content.

Our approach has the following contributions. First, our
technique employs a generative model. Previous techniques
[2], [4] have focused on feature modifications. The down-
side of feature modification is that the acoustic model (AM)
might recognize the relation between the original and the
transformed data. Once the AM learns the relationship, the
augmented data is no longer a new representation and its
benefit will be limited.

Second, our technique generates utterances with WaveNet
instead of conventional vocoders. Conventional vocoders lose
detail information during parameterization, which causes ar-
tifacts to be left in the generated speech [5]. These artifacts,
which do not exist in real data, can hinder the AM’s general-
ization on real data.

Lastly, our technique generates speech with diverse pitch
patterns. Our WaveNet is not conditioned by vocoder param-
eters such as a fundamental frequency and spectral informa-
tion. Consequently, as details of acoustic features including
pitch variability is not given to WaveNet, the synthetic speech
can have diverse pitch patterns.

We present results on Wall Street Journal (WSJ) corpus
to show that the proposed technique performs better than DA
using speed perturbation which is the most effective DA so
far. In addition, VC-WaveNet combined with speed perturba-
tion showed further improvement by mutually complement-
ing each other.

2. RELATION TO PRIOR WORK

With the improvements in deep generative models, train-
ing synthetic data is widely performed for various tasks [6],
[7], [8]. In speech recognition, however, most studies have
proposed techniques mainly about modification of existing
acoustic data such as speed perturbation [1] and VTLP [2].

Recently Nishizaki [9] proposed a DA method using a
variational autoencoder (VAE) for the first time and showed
it improves an AM. We also introduce a DA with generative
model but with WaveNet, which is more suitable for synthe-
sizing waveform data.

WaveNet, firstly proposed as a part of TTS system with
linguistic conditioning features [3], [10], [11], has been re-
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cently investigated as a vocoder with acoustic features for
various purposes including voice conversion [12], [13], [14],
[15], [16]. Unlike these studies, our final goal is to augment
data for AM training. For this purpose we convert voice with
diverse pitch patterns by omitting detailed acoustic informa-
tion and we show the synthetic speech in this manner actually
improves ASR performance.

3. WAVENET

Wavenet, a generative model proposed in [3] for producing
high quality signal, is an autoregressive network which di-
rectly estimates a raw waveform sample-by-sample. For the
input sequence x = x1, ..., xN , the model approximates the
joint probabilities of signal as follows:

p(x) '
N∏

n=1

p(xn|xn−R−1, xn−R, ..., xn−1,Λ), (1)

where R represents a receptive field length and Λ represents
model parameters. Its architecture mainly consists of several
stacks of residual blocks including 2 × 1 dilated causal con-
volution, gated activation, and 1 x 1 convolution. The gated
activation function in a residual block is defined as:

z = tanh(Wf,l ∗ x)� σ(Wg,l ∗ x), (2)

where ∗ denotes a causal convolution operator, � denotes an
element-wise product operator, l is the layer index, f and g
denote a filter and a gate, respectively, and W is a trainable 2
× 1 convolution filter. Every skip connections from residual
blocks are led to separate 1× 1 convolution layers and finally
softmax layer. Then the softmax layer generates the posterior
probabilities of waveform quantized to 256 values by µ-law
compressor[17].

We can control characteristics of generated audio by pro-
viding conditions [3], [10], [18]. The conditional WaveNet
has the gated activation function in the form of the following:

z = tanh(Wf,l ∗ x+ Vf,l ∗ y + Uf,lh) �
σ(Wg,l ∗ x+ Vg,l ∗ y + Ug,lh),

(3)

where V is a learnable 1 × 1 convolution filter, U is a learn-
able linear projection, y represents processed local auxiliary
features which have the same time resolution as the input
speech waveform, and h is global features which is repeated
across time.

The architecture of WaveNet model used in this study is
shown in Fig. 1. This model consists of the local condi-
tioning network and the waveform generator. The condition-
ing network first encodes linguistic features with 3-layer bi-
directional LSTM RNNs and concatenates them with another
auxiliary local feature, log-energy values. Note that both local
features are extracted every 10 msec from the 25 msec length

Fig. 1. Diagram of a variant WaveNet consisting of vocoder
and local conditioning network.

of windowed speech waveform, resulting in 100 Hz of sam-
pling frequency. Thus it upsamples to the desired frequency
(16 kHz) with a transposed convolution layer, which is fol-
lowed by 1-D convolution. Finally the waveform synthesis
part generates audio at 16 kHz conditioned on outputs from
conditioning network and speaker embedding vector based on
Eq. 2.

4. EXPERIMENTAL SETUP

Our experiments are done on the WSJ corpus (LDC93S6B
and LDC94S13B) [19], containing 16 kHz, 16 bit of reading
speech. Its training set contains 283 speakers, and 10 speakers
for ”dev93” validation set, 8 speakers for ”eval92” test set.
Each speaker has around 20 to 30 minutes of audio files.

4.1. ASR

For training DNN AM, we used 4-layer bi-directional LSTM
RNNs of 256 memory blocks with cross entropy loss. It was
trained with forced-alignments of triphones obtained from
previously trained GMM-HMM AM. Its input feature is a
filter-bank with 40 coefficients on a mel-scale plus energy
value and their first and second temporal derivatives, which
leads to 123 dimensional input vector per one frame. For
filter-bank feature, we used 25 msec long hamming window
every 10 msec and each input feature was normalized for
each individual utterance. During decoding, a beam-size of
10 was used with a pruned trigram language model.

Model parameters are updated by stochastic gradient de-
scent (SGD) on all cases using a fixed learning rate of 1e-3
and a mini-batch size of 16. The number of training epochs
used was 30 for the baseline system while a lower number of
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epochs was used for the augmented systems to keep its train-
ing time similar to the baseline system. We used ”dev 93”
dataset as a validation set for early stopping. Results are pre-
sented on the ”eval 92” dataset.

4.2. VC-WaveNet

Fig. 2. Training and Conversion processes of VC-WaveNet.

Fig. 2 illustrates the VC system with the conditional
WaveNet presented in Sec. 3. In order to train the VC sys-
tem, we first trained a GMM-HMM system on the training set
with Kaldi [20] recipe s5. The GMM-HMM AM had 3392
triphones, upon which we extracted forced-alignments to pre-
pare data for DNN AM. Then the alignment was converted
into phoneme sequences which were then used to train the
WaveNet model. As input into the LSTM layers, we used
phoneme context data which include two previous and two
following phonemes for each phoneme. Log-energy values,
another local auxiliary feature, was also obtained in the form
of 1 dimensional sequence during the process. Finally we set
speaker information as the global condition in the form of a
trainable embedding vector.

During conversion (Fig. 2), we provided one random
speaker id out of total 283 speakers for each reference utter-
ance. This process led to 2-fold data augmented system.

We used nv-wavenet source code provided from NVIDIA
to speed up inference time. Training set of 80 hours was split
into 4 and each was assigned one GPU device. As a result, 4
GPUs each parallelly processed 20 hours of training data. In
this manner, we were able to complete the conversion process
in 12 hours.

Hyper-parameters of WaveNet model is as follows: 30
layers, 64 residual channels, 256 skip channels, and 512 as
a maximum dilation length. Input sequence representing lin-
guistic info are set as 160 (32 embedding dimension × 5
context width) dimensional vector sequence. Also we set a
speaker embedding dimension as 16. Dropout was applied
with probability of 0.15 for all 3 LSTM layers in a condi-
tioning network and on linear transformation layer on speaker

embedding.

4.3. VC-WORLD

We also made another 2-fold system with VC but using con-
ventional vocoder called WORLD [21]. With its analysis
algorithms, WORLD estimates speech parameters including
F0, spectral envelope, and aperiodic values. For VC, we
adopted a simple method of globally normalizing the source
speakers mean and standard deviation of the log fundamental
frequency F0 in frame-level by using a linear transformation:

F0
′ =

σy

σx
(F0 − µx) + µy, (4)

where µ and σ are global mean and standard deviation values
of log F0, x and y are source and target speaker in training
data respectively.

4.4. Speed Perturbation

Speed-perturbation technique is reported to be the most ef-
fective augmentation method for various sizes of corpora [1].
Following [1], two speed-perturbed copies of the original
training data were generated by changing the speed to 90 %
and 110 % of the original speed using Sox audio manipu-
lation tool [22]. For this 3-fold training set, we generated
alignments using GMM-HMM system using Kaldi [20].

5. RESULTS AND DISCUSSION

Table 1 shows the results on ”eval92” test set with different
data augmented systems. A relative improvement of 10.3 %
was observed using WaveNet-based converted training data
while 8.9 % was obtained when using speed perturbed data.
WORLD-based synthetic data is found to be less helpful even
than speed perturbed data.

System Fold Epochs eval92 WER (%)

Baseline 1 24 / 30 5.17
Speed-perturbed 3 7 / 10 4.71

VC-WORLD 2 9 / 15 4.75
VC-WaveNet 2 12 / 15 4.64

VC-WaveNet +
Speed-perturbed 6 5 / 5 4.32

Table 1. WER (%) of baseline and augmentation systems on
eval92 evaluation set

A sample of augmented data with 90 % of original speed
is shown in Fig. 3 (c). A shift in the signal power towards
lower frequencies and resulting low power at high frequen-
cies are observed as expected. Also we can see expanded
spectrogram in the time axis as a result of time warping. Its
spectral shape is similar to the reference in Fig. 3 (a).

Fig. 3 (d) and (e) describe voice audio samples converted
from Fig. 3 (a) to the target voice Fig. 3 (b). For synthetic
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speech from WORLD, its feature shape seems similar to the
reference, just as the speed-perturbed one does. On the other
hand, the spectrogram of speech generated by WaveNet dif-
fers from spectral of the reference although it contains same
linguistic contents. This synthetic utterance (Fig. 3 (e)) rep-
resents a new generated utterance, novel as if spoken by dif-
ferent speaker rather than a modified one.

Fig. 3. Spectrograms of segmented sample speech. Ones
in gray box including (c), (d) and (e) represents converted
speech from the reference (a) (same linguistic content).
(a) Reference (original) utterance by source speaker 011 (fe-
male) that is to be transformed. (b) Another utterance (differ-
ent linguistic content with the reference) by target speaker 20c
(male). (c) Speech with 90 % of original speed. (d) Speech
converted to the target voice 20c by WORLD. (e) Speech con-
verted to the target voice 20c by WaveNet.

According to Fig. 4, augmented data in this manner seems
to improve generalization as it reduces the gap of frame error
rate (FER) between training and validation sets compared to
other augmented data systems.

Fig. 4. Difference of FER between training and test sets
across epochs. Baseline, 3-fold speed perturbation, 2-fold
VC-WORLD, and 2-fold VC-WaveNet systems are com-
pared.

Speed perturbation technique has an advantage in that it is
an effective DA method with a low implementation cost [1].
Also it warps signals in the time axis which is not done in
VC-WaveNet. Combining these two complementary methods
achieved the lowest WER of 4.32 % as shown in Table 1.

Fig. 5. Spectrograms of WaveNet-based generated samples
with different local condition settings.
(a) Conditioned on both linguistic feature and log-energy val-
ues. (b) Conditioned only on linguistic feature. Boxes with
black lines denote high signal energy while ones with dotted
lines denote low signal energy.

According to [3], F0 information as a local condition for
WaveNet is crucial to produce speech with natural prosody.
In order to generate utterances with various stress and pitch
changes across sentence, we did not condition on F0 values.
However, conditioning only on linguistic feature without any
acoustic feature caused generating an unstable waveform with
uncontrolled volume (Fig. 5) which is also difficult for hu-
man to recognize. Thus we additionally provided log-energy
values as local conditions which led to stable synthetic wave-
form.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a VC-WaveNet technique without
vocoder parameters and demonstrate its effectiveness as a DA
method for ASR task. As our WaveNet is locally conditioned
only on linguistic and energy information, it generates speech
imitating the target speaker with diversity unlike other VC
cases. It is shown to improve WER of WSJ corpus better than
speed perturbation, an most successful existing DA method,
or a simple VC by WORLD vocoder. Furthermore, combin-
ing VC-WaveNet and speed perturbation led to better WER.
In future we would like to investigate the perturbation of lo-
cal conditions to the WaveNet to further improve ASR per-
formance. Also we intend to study the effectiveness of our
proposed techniques when applied to a larger corpus.
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