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ABSTRACT

Conventional deep neural network (DNN)-based speech enhance-
ment (SE) approaches aim to minimize the mean square error (MSE)
between enhanced speech and clean reference. The MSE-optimized
model may not directly improve the performance of an automatic
speech recognition (ASR) system. If the target is to minimize the
recognition error, the recognition results should be used to design
the objective function for optimizing the SE model. However, the
structure of an ASR system, which consists of multiple units, such
as acoustic and language models, is usually complex and not differ-
entiable. In this study, we propose to adopt the reinforcement learn-
ing (RL) algorithm to optimize the SE model based on the recogni-
tion results. We evaluated the proposed RL-based SE system on the
Mandarin Chinese broadcast news corpus (MATBN). Experimental
results demonstrate that the proposed SE system can effectively im-
prove the ASR results with a notable 12.40% and 19.23% error rate
reductions for signal to noise ratio (SNR) at 0 dB and 5 dB condi-
tions, respectively.

Index Terms— reinforcement learning, automatic speech
recognition, speech enhancement, deep neural network, character
error rate

1. INTRODUCTION

The performance of automatic speech recognition (ASR) has signif-
icantly improved in recent years. However, a long-existing issue still
remains: ASR suffers severe performance degradation in noisy envi-
ronments [1]. Many approaches have been proposed to address the
noise issue. One category of these approaches is speech enhance-
ment (SE) [2, 3]. The goal of SE is to generate enhanced speech
signals that closly match clean and undistorted speech signals, by
removing the noise components from the noisy speech [4, 5, 6]. Tra-
ditional SE approaches are designed based on some assumptions of
speech and noise characteristics [7, 8]. Generally, these approaches
can yield a satisfactory performance in terms of speech quality but
may not be directly beneficial in the improvement of the ASR per-
formance [9, 5].

Recently, deep-learning-based SE approaches have received in-
creased attention, and it has been confirmed that they yield better
performances than traditional methods in numerous tasks [10, 11,
12]. Because of the deep structure, the deep-learning-based mod-
els can effectively characterize the complex transformation of noisy
speech to clean speech, or they can precisely estimate a mask to
filter out noise components from the noisy speech. To train the
deep-learning-based models, the mean square error (MSE)-criterion
is usually used as the objective function. Specifically, the model is

trained to minimize the MSE of the enhanced speech and clean ref-
erences. Although it has been proven that the MSE-based objective
function is effective for noise reduction, it is not optimal for im-
proving speech quality and intelligibility, or the ASR performance
[13, 14, 15, 16].

Clearly, the recognition results should be the optimal objective
function for SE if the target task is to achieve good ASR perfor-
mance. However, most of the commonly used ASR systems consist
of multiple modules, such as the acoustic models and language mod-
els. Correspondingly, the input–output correlation is extremely com-
plicated and may not be differentiable. Thus, it is difficult to directly
use the recognition results to optimize the SE models. Moreover, it
takes a considerable amount of resources to build an ASR system,
and thus the use of a well-established ASR system from a third party
is favorable. In this study, we propose to adopt the reinforcement
learning (RL) algorithm to train an SE model to minimize the recog-
nition errors.

The main concept of the RL algorithm is to take an action in an
environment in order to maximize some notion of a cumulative re-
ward [17]. Different from supervised and unsupervised learning al-
gorithms, the RL algorithm learns how to attain a (complex) goal in
an iterative manner. To date, the RL algorithms have been success-
fully applied to various tasks, such as robot control [18], dialogue
management [19], and computer game playing [20].

The RL algorithm has also been adopted into the speech signal
processing filed [21]. In [22], the RL has been used to improve the
ASR performance. Based on hypothesis selections by the users, the
system can improve the recognition accuracy as compared to unsu-
pervised adaptation. Meanwhile, the RL has been used for DNN-
based source enhancement by optimizing objective sound quality
assessment score [23]. The results show that by using the RL algo-
rithm, both perceptual evaluation of the speech quality (PESQ) [24]
and the short-time intelligibility measure (STOI) [25] scores can be
improved as compared to the MSE-based training criterion [26].

In this study, we adopt the same idea presented in [23] to es-
tablish an RL-based SE system to optimize the ASR performance.
Instead of estimating the ratio masking as used in [23], the pro-
posed SE system determines the optimal binary mask to minimize
the recognition errors. Notably, the ASR system is fixed in the pro-
posed method. This is to simulate most realistic scenarios that a
well-trained ASR system is provided by a third party, and an SE is
built to generate suitable inputs to the ASR system. We evaluated
the proposed RL-based SE system on a Mandarin Chinese broad-
cast news corpus (MATBN) [27]. According to our experimental
results, the proposed RL-based SE system effectively decreases the
character error rate (CER) during the testing of the recognition in
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the presence of noise. The remainder of this paper is organized as
follows. Section 2 reviews relevant techniques. Section 3 introduces
the proposed system. Section 4 presents the experimental setup and
results. Finally, section 5 provides conclusion remarks.

2. RELATED WORKS

In the time domain, a noisy speech signal y is formulated by a com-
bination of a clean speech signal s and an additive noise signal n. By
performing short-time Fourier transform (STFT), log–power opera-
tion, and mel–frequency-based filtering, the mel–frequency power
spectrogram (MPS) of y can be expressed as:

Y = S+N. (1)

In this study, p frames of the STFT MPS feature vectors are concate-
nated to form one chunk vector for Y, S and N.

X̂ c = [X⊤
cp,X⊤

cp+1, · · · ,X⊤
(c+1)p−1]

⊤, X ∈ {Y,S,N}, (2)

where c = {0, 1, · · · , C} is a chunk index, and C is the total number
of chunks vectors within X . Note that when p = 1, the chunk vector
is the STFT MPS feature vector.

2.1. Ideal Binary Mask-based SE System

It has been reported that when the goal is to improve the ASR per-
formance, ideal binary mask (IBM) is more suitable than ideal ratio
mask (IRM) or directly mapping [28] to be used to design the SE
system. Therefore, we implement an IBM-based SE system in this
study. For the IBM-based SE system, the input Ŷ was filtered by
IBM to obtain the enhanced output Ŝ′:

Ŝ′ = Ŷ.× B̂, (3)

where “.×” represents an element-wise multiplication, and B̂ is the
IBM matrix, which is defined as:

B̂ = 1{log(Ŝ)− log(N̂)}, (4)

where 1{·} is the unit step function applied to each element of B̂.

2.2. DNN-based SE Model with the MSE Criterion

For the DNN-based SE, a set of noisy-clean training pairs are pre-
pared as the input and reference of a DNN model. For the noisy Ŷ,
F chunk vectors are then cascaded to include more context informa-
tion: Ỹc = [Ŷ⊤

c−F+1, Ŷ
⊤
c−F+2, · · · , Ŷ⊤

c ]⊤ . The mapping process
of a feedforward DNN with L hidden layers is the formulated as,

h1(Ỹc) = σ{W1log(Ỹc) + b1},
...

hL(Ỹc) = σ{WLhL−1(Ỹc) + bL},
Ŝ′′
c = σ1{WL+1hL(Ỹc) + bL+1},

(5)

where Wℓ and bℓ are the weight matrices and bias vec-
tors,respectively. Both σ{·} and σ1{·} are activation functions,
in which σ{·} is the sigmoid function while σ1{·} represents a
linear transformation. When the MSE is used as the cost function,
the parameter set Θ that consists of all of Wℓ and bℓ in Eq. (5) is
estimated by,

Θ∗ = argminΘ(
1
C

∑C
c=1 ∥ log(Ŝc)− log(Ŝ′′

c ) ∥22) (6)
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Fig. 1. The block diagram of the proposed SE system, which in-
cludes “IBM clustering”, “Action estimation”, and “Target action
determination”.

3. PROPOSED METHOD

Figure 1 illustrates the proposed system, which consists of three
modules: “IBM clustering”, “Action estimation”, and “Target action
determination”.

3.1. IBM clustering module

In the IBM-based SE system, an IBM filter is computed for each
feature vector. The IBM clustering module groups the entire set of
IBM vectors B̂ collected from the training data to A clusters based
on the K-means algorithm. Each cluster is represented as ĝa with
respect to the cluster index a. The ensemble of these clusters is
denoted as Ĝ. Thus, we have,

Ĝ = [ĝ1, · · · , ĝa, · · · , ĝA]. (7)

Since the elements in each IBM vector acquire binary values, the
Hamming distance [29] is used to compute the distance between the
two vectors in this study. Meanwhile, we used 32 clusters (A = 32)

to group B̂ based on the k-means algorithm.

3.2. Action estimation module

To effectively use the training data, we first pre-train the DNN model
by placing Ỹc at the input and B̂c at the output. This pre-trained
model was then re-trained with additional hidden layers to compute
the A-dimensional action vector a′′

c at cth chunk. Among the A
elements in a′′

c , the index with the maximum value was determined,

ac = argmax
a∈A

[a′′
c ]a, (8)

where [·]a represents the ath element of the vector, and A =
{1, 2, · · · , A}. In addition, different from the spectral mapping
in Eq. (5), the softmax operation is used in the final layer in the
re-trained DNN (i.e. σ1 is now the softmax function). The cost
function for the re-training process is expressed as,

Θ∗ = argminΘ(
1
C

∑C
c=1 ∥ ac − a′′

c ) ∥22), (9)

where ac is the reference target, which is derived from Target action
determination module and is described in the next section.

3.3. Target action determination module

Figure 2 shows the flowchart of the Target action determination
module. First, a′′

c , which is estimated from the action estimation
module is used to determine the cluster index ac in Eq. (8). Then,
the IBM selection function selects ga from Ĝ with respect to index
a = ac. Next the SE function uses the selected ga to enhance the
input Ỹc (i.e. Ỹc. × ga). After enhancing all C chunk vectors,
both the input noisy and the IBM-enhanced STFT–MPS features are
reconstructed back to the time domain signals, and then provide the
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Fig. 2. The flowchart of Target action determination module, which
is used to update the input action vector.

ASR to calculate the utterance-based error rates (ERs), zy and zs′ ,
respectively. Both zy and zs′ are used in the Target action determi-
nation function, which is a two-stage operations, namely, the reward
calculation and action update.

3.3.1. Reward calculation

Rather than directly use zs′ as the reward, we applied the relative
value between zy and zs′ in Eq. (10).

R = tanh{α(zy − zs′)}, (10)

where α > 0 is a scalar factor, which is set to 10 in this study.
For this equation, the positive R denotes a larger ER of zy than that
of zs′ , thus suggesting that the enhanced speech can provide bet-
ter recognition results. On the other hand, a negative R denotes a
smaller zy than zs′ , suggesting that the enhanced speech gives worse
recognition performance.

In addition to the utterance-based rewards R, we also consider
a chunk-based reward because the action for each chunk vector
may act and contribute differently to zs′ . That is, an effective en-
hancement can cause positive contribution on the ASR performance.
Therefore, we defined a time-varied reward rc as:

Êc = (log(Ŝc)− log(Ŝ′
c))

⊤(log(Ŝc)− log(Ŝ′
c)), (11)

Ẽc =
Êc

max0≤c≤C−1(Êc)
, (12)

rc =

{
(1− Ẽc)R, R > 0,

ẼcR, R ≤ 0.
(13)

From Eqs. (11)– (13), the weighting factor Ẽc, 0 ≤ Ẽc ≤ 1, at the
cth chunk is the normalized square error. When selecting a erroneous
IBM vector, the normalized error Ẽc in(12) is large, and accordingly
rc is small, which penalizes this wrong action, as to be introduced in
the next sub-section.

3.3.2. Action update

To update the action vector, a′′
c , we first determine two different ac-

tion indices, aB̂c
and ac. To obtain aB̂c

, we first follow Eq. (4) to
determine an IBM vector, which is then used to locate the closest
cluster in Ĝ; the located cluster index is aB̂c

. On the other hand, the
cluster index ac is determined by Eq. (8), as presented in the Action
estimation module.

With the determined action indices aB̂c
and ac, the input ac-

tion vector a′′
c is updated for the output ac based on the following

equations:

[ac]ac =

{
rc +maxac∈A[a

′′
c ]ac , R > 0,

[a′′
c ]ac , R = 0,

(14)

and
[ac]a

B̂c
= [a′′

c ]aB̂c
− rc, R < 0. (15)

DNN IBM-SE ASR

Action estimation Target action determination

Noisy

speech

X

Recognition

results

Fig. 3. The block diagram of testing part for the proposed algorithm.

3.4. Testing procedure

After performing the training on DNN with the associated objective
function in Eq. (9), Fig. 3 illustrates the block diagram of the testing
process. From the figure, the trained DNN model is applied on a
noisy STFT–MPS X̂, which is first extracted from the time-domain
signal x. The estimated IBM indices are then used in combination
with Eq. (8) for each chunk to further enhance the input noisy and
provide Ŝx in the output of the IBM–SE function. The waveform s′x
is reconstructed from Ŝx is then applied to ASR to get recognition
results.

4. EXPERIMENTS

4.1. Experimental setup

We conducted our experiments on the MATBN task, which was an
198-hour Mandarin Chinese broadcast news corpus [27]. The utter-
ances in MATBN were originally recorded at a 44.1 kHz sampling
rate and were further down-sampled to 16 kHz. A 25-hour gender-
balanced subset of the speech utterances was used to train a set of
CD-DNN-HMM acoustic models, which were used in our previous
work [30]. A set of trigram language models was trained on a collec-
tion of text news documents published by the Central News Agency
(CNA) between 2000 and 2001 (the Chinese Gigaword Corpus re-
leased by LDC) with the SRI Language Modeling Toolkit [31]. The
overall ASR system was implemented on the Kaldi [32] toolbox.
Each speech waveform was parameterized into a sequence of 40-
dimensional filter-bank features. The DNN structure for the acoustic
models was consisted of six hidden layers, and each layer had 2048
nodes. The dimensions for the input and output layers were 440
(40 × (2 × 5 + 1)) and 2596, respectively [30]. The evaluated re-
sults are reported as the average CER. To train the RL–SE system,
another 460 utterances were selected from the MATBN corpus. The
overall RL–SE and ASR systems were evaluated using another 30
utterances, where the utterance lengths were around 1 to 6 seconds,
from the MATBN testing set. In this study, we used the baby-cry
noise as the background noise. The baby-cry noise waveform was
divided into two parts, the first part was artificially added to the 460
training utterances with signal-to-noise ratio (SNR) level at 5 dB; the
second part was artificially added to the 30 testing utterances at 0 and
5 dB SNR levels. Notably, the training and testing utterances were
simulated using different segments of the noise source waveform,
and thus the properties were slightly different. Finally, we have pre-
pared 460 noisy–clean pairs to train the RL-based SE system. For
all of the training and testing data, the applied frame size and the
shift for STFT were 32 and 16 ms in length, respectively. The 64-
dimensional MPS features were then extracted from all noisy and
clean utterances. Next, we established two RL-based SE models,
with two different parameters p for the chunk vectors: the systems
with p = 1 and p = 2 are termed RLSE1 and RLSE2, respec-
tively. Both RLSE1 and RLSE2 were composed of one hidden
layer with 64 nodes, and 32 for the output nodes. The input dimen-
sions of RLSE1 was 704 (64 × 1 × 11), and that of RLSE2 was
640 (64× 2× 5), in which the 11 and 5 are values of the parameter
F , and is used for providing the context information (as mentioned
in Section 2.2).
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Fig. 4. Clustered IBMs were derived by the k-means algorithm.

4.2. Experimental results

Figure. 4 shows all the 32 IBM vectors, each with 64-dimensions.
The IBM in Eq. (7) used in the RLSE2 system. Bright yellow el-
ements in the figure denote ones (in terms of their binary values)
and the blue elements denote zeros. From the figure, we observe
that low-dimensional MPS features are dominated by speech com-
ponents. One possible explanation is that the noise signals did not
mask the human speech in the low-frequency regions. In addition,
the entire first column consisted of ones, thus suggesting that the
silence frames were also contained in the baby-cry noise.

We then compared the averaged CER results of the RLSE1 and
RLSE2 systems, and the corresponding results are listed in Table
1. The unprocessed noisy speech was also recognized by an ASR
system, and the corresponding results are denoted as “Noisy”. To
test the effectiveness of RL learning, we designed two other sets
of experiments with the same 32 IBM vectors: (1) the one-nearest-
neighbor (1nnSE) (2) the DNN (DNNSE) methods were used to
determine the IBM vectors for enhancement. Please note that for
DNNSE, only the MSE term is used to train the DNN model. The
enhanced speech was then recognized by the same ASR system; the
corresponding results were denoted as 1nnSE in Table 1.

When the recognition was tested using the 30 clean testing utter-
ances, the CER was 11.50%. However, as shown in Table 1, when
there was noise involved in the background, the CER was dropped
considerably to 56.14% and 81.40%, respectively, for 5 dB and 0
dB SNR levels. We then noted that 1nnSE could not provide any
improvements over Noisy, thus showing that one-nearest-neighbor
method could not select the optimal IBM vectors for SE to im-
prove the ASR performance. In addition, DNNSE provided better
CER than Noisy at 0dB but worse at 5dB SNR; the results con-
firm that the MSE criterion for DNNSE does not always improve
the recognition accuracy. Furthermore, both RLSE1 and RLSE2

provided better recognition results than those of Noisy, DNNSE
and 1nnSE, and RLSE2 outperformed RLSE1. The relative
CER reductions of RLSE2 over Noisy are 12.40% (from 56.14%
to 49.18%) at the 5 dB SNR level, and 19.23% (from 81.40% to
65.75%) for the 0 dB SNR level. The results in Table 1 clearly
demonstrate the effectiveness of RL-based SE for improving ASR
performance in the presence of noise.

To visually analyze the effect of the derived RL-based SE sys-
tem, we presented the spectrograms of one noisy utterance at the 5
dB SNR level (as shown in Fig. 5 (a)), as well as its clean and en-
hanced versions by RLSE1 and RLSE2 (as shown in Fig. 5 (b),
(c), and (d), respectively). From the figure, noise components of

Table 1. The average CERs of Noisy (the baseline), 1nnSE,
DNNSE, RLSE1, and RLSE2 at 0 and 5 dB SNR conditions.

SNR Noisy 1nnSE DNNSE RLSE1 RLSE2

5 dB 56.14 73.09 60.76 55.60 49.18
0 dB 81.40 85.79 73.88 77.20 65.75
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Fig. 5. The spectrograms of (a) Noisy speech, (b) clean speech, (c)
enhanced speech by RLSE1, and (d) enhanced speech by RLSE2.

noisy datasets were effectively removed by RLSE1 and RLSE2,
thus showing that despite the fact that the goal was to improve the
ASR performance, the RL-based SE also performed denoising on
the input speech.

Recent studies have reported a positive correlation between ob-
jective intelligibility scores and ASR performance [28, 33]. In Table
2, we show the STOI and PESQ scores of enhanced speech pro-
cessed by RLSE1 and RLSE2 at SNR levels of0 and 5 dB. The
results of the unprocessed noisy speech, shown as Noisy, are also
listed for comparison. From this table, we show that both RLSE1

and RLSE2 elicit higher STOI scores than Noisy and RLSE2 pro-
vides again clear improvements over RLSE1. From Tables 1 and
2, we can clearly note positive correlations between the STOI scores
and ASR performances. As for the PESQ scores, RLSE2 outper-
formed Noisy but RLSE1 slightly underperformed Noisy. It can be
noted that the correlation of the PESQ scores with ASR results is not
as strong as that of the STOI scores and the ASR results.

5. CONCLUSION

We present an RL-based SE for robust speech recognition without
retraining the ASR system in this study. By using the recognition
errors as the objective function, the RL-based SE can effectively
reduce CERs by 12.40% and 19.23% at 5 and 0 dB SNR condi-
tions, respectively. Notably, the current work adopts the noisy–clean
pair to prepare the IBMs and to train the action estimation module.
We also noted that although the objective is to improve ASR perfor-
mance, the enhanced speech presented denoised properties and was
with improved STOI scores. This study serves as a pioneering work
for building an SE system with the aim to directly improve ASR
performance. The designed scenario is practical in many real-world
applications where an ASR engine is supplied by a third-party. In the
future, more noise types and SNR levels will be considered to build
the RL-based SE system. We will also try to implement the whole
system with only noisy speech without the paired clean speech.

Table 2. The STOI and PESQ scores of RLSE1, RLSE2, and
Noisy at 0 and 5 dB SNR conditions.

SNR STOI PESQ
Noisy RLSE1 RLSE2 Noisy RLSE1 RLSE2

5 dB 0.82 0.82 0.86 1.85 1.67 1.96
0 dB 0.74 0.77 0.81 1.45 1.42 1.59
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