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ABSTRACT

In this paper, we present a joint training framework between
the multi-channel beamformer and the acoustic model for
noise robust automatic speech recognition (ASR). The com-
plex ratio mask (CRM), demonstrated to be more effective
than the ideal ratio mask (IRM), is proposed to estimate the
covariance matrix for the beamformer. Minimum Variance
Distortionless Response (MVDR) beamformer and Gener-
alized Eigenvalue (GEV) beamformer are both investigated
under the CRM-based joint training architecture. We also
propose a robust mask pooling strategy among multiple chan-
nels. A long short-term memory (LSTM) based language
model is utilized to re-score hypotheses which further im-
proves the overall performance. We evaluate the proposed
methods on CHiME-4 challenge dataset. The CRM based
system achieves a relative 10% reduction on word error rate
(WER) compared with the IRM based system. Without se-
quence discriminative training, our best single system already
achieves an average WER 2.72% on the test set which is com-
parable to the state-of-the-art.

Index Terms— Joint training, CHiIME-4, complex ratio
mask, speech recognition, beamforming

1. INTRODUCTION

Multichannel ASR in challenging noisy environments, e.g,
low signal-to-noise ratio (SNR), far-field, overlapped speech,
etc., has attracted lots of research efforts recently. The se-
ries of CHiME speech separation and recognition challenges
[1, 2] were designed to encourage researchers to develop ad-
vanced techniques to solve these problems. Beamforming is
one of the most useful techniques .

A complex Gaussian mixture model (CGMM) based
time-frequency mask estimation was proposed in [3, 4] to
help to calculate the steering vector for the MVDR beam-
forming. They got the best performance on CHiME-3 chal-
lenge [3]. Inspired by this work, some subsequent deep
learning based mask estimation and beamforming methods
were developed. In [5], an iterative mask estimation based
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on deep neural network was proposed to improve the con-
ventional CGMM based method and they ranked Ist in the
CHiME-4 challenge [S]. Meanwhile, a bidirectional LSTM
based time-frequency mask estimation was proposed in [6] to
estimate the covariance matrix for the MVDR or GEV beam-
former. Similar methods can be also found in [7, 8, 9, 10].
These mask-based beamforming methods only need to know
the time-frequency masks or the speech presence probability
without needing the knowledge of microphone array geom-
etry. Even for the more challenging cocktail party scenario
with overlapped speech problem in CHiME-5 [2], careful es-
timated masks through speaker dependent separation models
followed by a GEV beamforming also achieved the best per-
formance [11]. Among all of these methods, the key question
is how to reliably estimate masks. In this paper, we propose to
use complex ratio mask (CRM) [12] to replace the commonly
used real-valued mask. To the best of our knowledge, this is
the first time to use CRM to estimate the covariance matrix
for the multichannel beamforming. CRM has been verified
to be more effective than the ideal ratio mask in the monaural
speech separation task [12].

Recently, joint training between the beamformer and
acoustic model also attracts lots of interest. Joint training
means that the gradients derived from the ASR loss will
back-propagate through all the way from the acoustic model
to the complex valued beamforming and the mask estima-
tion networks. A unified architecture was proposed in [13]
to jointly optimize the multichannel enhancement and the
ASR components. Xiao et al. [14] also proposed to adopt
ASR cost to directly train the RNN based mask estimator.
Zmolikova et al. [15] proposed to use ASR criterion to
optimize the multichannel beamformer for recognizing the
speech corrupted by the overlapping speakers. Meanwhile,
Beamnet was proposed in [16] to jointly train the acoustic
model and the beamforming module to bridge the mismatch
between the front-end and the back-end. However, only the
real-valued mask was investigated in these papers. In this
work, we propose to jointly train the complex ratio mask
based beamformer and the acoustic model to expect better
ASR performance.

The contribution of this paper is three-fold. First, we pro-
pose to use complex ratio mask to replace the real-valued
mask to estimate the covariance matrix for the beamformer,
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Fig. 1. The proposed joint training system between the complex ratio mask (CRM) based beamformer and the acoustic model.

and demonstrate that CRM can lead to a more reliable beam-
former. Second, we jointly train the CRM-based beamformer
and the AM with using a more robust mask/probability pool-
ing method. Third, with simple cross-entropy criterion, we al-
ready achieved comparable ASR performance with the state-
of-the-art single system [17]. Note that in this paper, we did
not use I-vector technique and lattice-free maximum mutual
information (MMI) training method as [17] did.

2. PROPOSED JOINT TRAINING SYSTEM

Fig. 1 shows the whole framework of the proposed joint train-
ing system. The front-end mask estimator and the back-end
acoustic model are first separately trained. Then the joint
training is performed by concatenating them together.

2.1. Complex ratio mask front-end estimator

To the best of our knowledge, complex ratio mask has not
been investigated for multiple channel speech recognition.
CRM was first proposed in [12] for monaural speech separa-
tion. The mathematical derivation of the speech and the noise
complex mask are defined as,

S(t’f):Ms(t?f)*Y(t,f) (D

N(t, f) = M"(t, f)* Y (¢ f) 2

where Y (¢, f), S(t, f) and N(¢, f) denote the noisy speech,
clean speech and the pure noise at time frame ¢ and frequency
bin f in the complex domain. The complex mask of speech
and noise are represented as M*(¢, f) and M™(¢, f) in the
complex domain. ‘x’ indicates complex multiplication. Note

that (¢, f) will be omitted below for simplicity. Then the Eq.
(1) and Eq. (2) can be extended in the complex-domain forms:
(Sr +4Si) = (M7 + jM;) = (Y, + jY3) 3)
(N 4+ GNi) = (M + M)+ (Y +5Ys) - (4)
Where the subscript r and ¢ denote the real part and the imag-

inary part, respectively. Then the complex masks of speech
and noise are derived as:

V.S, +YiS; | V.S - YiS,
M; + jM; = >
e S 76 R 72> vzryz O
Y,N, +YiN;  Y,N; - YiN,
M + jMP = 6
PN =yt ey ©

As [12] did, the complex masks should be compressed into
the hyperbolic tangent to avoid the number infinity problem:
1— e—C-]W
CRM = K—F—— 7
1+e M @
This operation compresses complex mask values into [— K, K].
C controls its steepness. M denotes the mask. As [12] did,
K =10and C' = 0.1 are selected. Then as the top-left of Fig.
1 shows, DNN or BLSTM was used to train a front-end to
predict the real part and the imaginary part of speech or noise
CRM. Mean square error (MSE) was used as the training loss.

2.2. Mask-based beamforming

Mask-based beamforming was successful in CHiME-3 and
CHiME-4 challenges [3, 5]. Even in CHiME-5 challenge with
overlapped speech problem, the mask-based beamforming is
still promising if the speaker dependent mask could be esti-
mated properly [11].
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2.2.1. GEV beamformer

With the complex masks derived in subsection 2.1, the speech
or noise probability (or ideal ratio mask) at each time frame
can be estimated as:

MY P
(M5 Y (8 )2+ M5 Y (8 f)2

where v denotes either the speech or the noise. Comparing
to the commonly used ideal ratio/binary mask in [5, 6], there
is no independence assumption [18] between the noise and
speech in the CRM calculation.

The speech or noise probability p” (¢, f) is estimated in-
dependently for each microphone channel. Then the proba-
bilities of all channels are pooling into one probability as,

Pt f) =

®)

D
Pt ) =[] 84t 1) ©)
d=1

where d denotes the microphone channel index. Different
from [6, 16], we proposed to use multiplication pooling as
in Eq. (9) among different microphone channels here to re-
place the mean pooling (median pooling in the testing). Our
multiplication pooling here is a consistent operation between
the training and the testing. We found it was more robust than
the mean-median pooling. Because the multiplication pooling
can pick out the most confident T-F unit where speech exists.
A similar idea can be found in [10]. But our system is a joint
training system, we did not use the discontinuous indicator
function as [10] did. Then the speech or noise covariance ma-
trix can be estimated as,

T
o Zt:l p (ta 1Y(t, f)Y(t, f)H
- T _

Et:l pY (t’ f)
Where T' denotes the total frame number of an utterance. The
superscript H represents the conjugate transpose. We also

.. (f) (10)

tried ®gs = Zthl SSH to directly calculate the covariance
matrix considering that the speech or noise of each channel
can be easily estimated through the predicted complex ratio
masks. But it did not perform well in our experiments com-
pared to the slightly conservative way in Eq. (10).

GEV is aimed at maximizing a posteriori signal-to-noise
ratio (SNR) [6], and the beamforming vector W?EV is as,
wOEY (f) = argmax wH(f)®ss(f)w(Sf)

w(f) wH( )Y ®nn(f)w(f)

an

2.2.2. MVDR beamformer

MVDR beamformer is to find a weight vector to target into
the speech direction without speech distortion while depress-
ing the noise from other directions [10]. The MVDR beam-
forming vector can be calculated as [10] did,

<I>NN(f)_1c(f)

MVDR _
YD e e 1P

where ¢(f) is the steering vector which is calculated through
the principal component analysis (PCA) of the speech co-
variance matrix ®gg(f). An alternative MVDR beamformer
is derived from the multichannel Wiener filter [10] as w =
%u, u is the one-hot vector representing a ref-
erence microphone. Its advantage is to avoid the PCA, but its
performance was worse than the one with Eq. (12) [10].

2.3. Joint training with acoustic model

Wide residual BLSTM (WRBN) based acoustic model was
used in our paper, and it is similar to the structure in [19,
20]'. WRBN is an improved version over the convolutional,
long short-term memory, fully connected deep neural network
(CLDNN). WRBN achieved good performance in CHiME-4
challenge [20]. The model details can be found in [20]. We
firstly trained a WRBN acoustic model based on the log-mel
filter bank features as the top-right part of Fig. 1 shows. Then
it was used as our initial model for the joint training.

For the joint training, as Fig. 1 shows, we concatenate
all of the front-end modules with the back-end modules to-
gether. We jointly optimize the models on a whole utterance
with full back-propagation through time using a cross-entropy
(CE) criterion. The gradients derived from the CE loss will
go through the real-valued domain AM, log-mel filter bank
feature extraction, complex-valued domain beamformer, real-
valued domain mask operation and mask prediction. It means
that the ASR loss will finetune the complex mask estimation
networks to directly serve for the ASR performance.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Dataset and experiments setup

The database we used in this paper is CHiME-4 six channel
data [21]. For the complex mask estimation network, we use
DNN and also BLSTM to predict the complex masks. The
DNN has three fully connected layers with 1024 hidden units
for each layer. The BSLTM has one bi-directional LSTM
layer with 512 units in the front, followed by two fully con-
nected layer with 1024 units for each layer. Dropout rate is
0.2 for both of them. Note that the DNN used for mask es-
timation here is larger than the DNN in [6]. The details of
WRBN based acoustic model with 2042 senones output can
be found in [20, 19]. All of the front-end mask estimators,
complex-valued beamforming operations and back-end AM
are conducted on Tensorflow-1.9.0 with Python 3.6.4. To sta-
bilize the training, the beamforming part was conducted on
CPU while other parts were done on GPU. The learning rate
for joint training was set to 1.0e-6.

!"Thanks Peidong Wang (Ohio Univ.) for sharing the WRBN code.
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3.2. Results and discussions

Table 1 presents WER results of disjoint training systems by
decoding with 3-gram LM. The proposed CRM-based beam-
forming is consistently demonstrated to be more effective
than the IRM-based beamforming on the simulation and the
real sets. Because there is nearly no assumption in the defini-
tion of CRM while IRM needs the independence assumption
between the speech and the noise [18]. The GEV beamform-
ing is superior to the MVDR beamforming where [16] has
similar observations on CHiME-4 challenge. On the real case
of the test set, CRM-GEV can reduce the WER from 6.10 to
5.82 by comparing with the IRM-GEV.

Table 1. WERs of disjoint training system with 3-gram LM
decoding on the development set and the test set.

Mask | Beamforming Dev (%) Test (%)
real | simu | real | simu
IRM | MVDR 440 | 421 | 6.15 | 5.30
IRM | GEV 436 | 429 | 6.10 | 5.16
CRM | MVDR 436 | 415 | 596 | 5.07
CRM | GEV 4.28 | 4.11 | 5.82 | 4.96

With Table 2, we show the joint training performance on
the development set and the evaluation set by comparing to
the disjoint training systems. Compared to the disjoint train-
ing systems, the joint training systems can obtain slightly
larger improvements on the simulation set than on the real set.
For example, CRM-JointTr can reduce the WER from 4.96 to
4.79 on the simulation case of the test set while reduce the
WER from 5.82 to 5.74 on the real case. This is because that
there are much more simulation data than the real data (1600
utterances for real and 7138 utterances for simu) in the train-
ing set. Furthermore, with the 5-gram LM plus the RNNLM
or LSTM re-scoring, the performance can get large improve-
ments. LSTMLM is more effective than the RNNLM. Finally,
the proposed CRM-based joint training system can get a rela-
tive 10% WER reduction comparing with the IRM-based joint
training system, e.g., reducing the WER from 3.35 to 3.03 on
the real case of the test set.

Table 3 shows the WER comparisons with state-of-the-
art systems on the CHiME-4 test set. Compared with the
CHiME-4 baseline system [21], our best system can achieve
75.7% relative improvement on average. The most compara-
ble systems are UPB Beamnet [16, 20] which is also a joint
training system, our proposed CRM-based joint training sys-
tem are better than their real-valued mask based systems. Our
system is also superior to the MERL system [7] and Ohio
MVDR system [10]. As the USTC system [5] is a fusion
model, we here compare to the state-of-the-art single sys-
tem, namely JHU interspeech2018 system [17]. Without us-
ing any adaptation, I-vector and LF-MMI training criterion
which are adopted in [17], we already match the performance
of the JHU system [17] on average. In our method, we found

Table 2. WERs between disjoint training systems and joint
training systems. The beamforming is GEV all belows. The
basic disjoint/joint training system uses 3-gram LM. Then the
joint training systems adopts 5-gram LM plus RNNLM or
LSTMLM re-scoring.

System Dev (%) Test (%)

real simu ave | real simu ave
IRM-Disjoint | 436 429 433 | 6.10 5.16 5.63
CRM-Disjoint | 428 4.11 420 | 5.82 496 5.39
IRM-JointTr 434 410 422 | 6.10 479 545
+ RNNLM 3.18 3.13 3.16 | 458 336 397
+ LSTMLM 235 224 230|335 259 297
CRM-JointTr | 425 4.01 4.13 | 574 479 5.27
+ RNNLM 303 301 3.02|432 333 3.83
+LSTMLM 218 210 2.14 | 3.03 240 2.72

BLSTM-based CRM front-end did not improve the perfor-
mance by comparing to the DNN-based CRM front-end. But
our DNN model is much larger than the DNN model where
only 2 layers were adopted in [6]. As BLSTM is trained on
the whole utterance, it might decrease its generalization capa-
bility due to the context dependency.

Table 3. WER comparisons with state-of-the-art systems on
the CHiME-4 test set.

System real simu  ave
CHiME-4 Baseline [21] 11.5 109 112
UPB GEV-Beamnet-JointTr [16] 542 395 4.69
UPB GEV + Adaptation [20] 348 276 3.12
MERL GEV + Adaptation [7] 3.81 294 338
Ohio MVDR + Adaptation [10] 365 3.09 337
JHU GEV + I-vector + LF-MMI [17] | 2.74 2.66 2.70

Proposed BLSTM-CRM-JointTr * 325 241 283
Proposed DNN-CRM-JointTr * 303 240 272

* we haven’t used adaptation, I-vector and LF-MMI, but in the plan

4. CONCLUSIONS

In this paper, we proposed a complex ratio mask (CRM) based
beamforming to replace the commonly used real-valued mask
based beamforming. The joint training between the CRM-
based beamforming and the acoustic model are also con-
ducted with using a more robust mask pooling method. The
proposed CRM-based joint training system can get a relative
10% WER reduction compared with the real-valued mask
based system. Without using any speaker adpatation, I-vector
and Lattice-free maximum mutual information (LF-MMI)
training criterion, our method has already been highly com-
petitive to the state-of-the-art system [17]. In the near future
work, we plan to utilize speaker adaptation and LF-MMI to
further optimize our CRM-based joint training system.
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