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ABSTRACT

This paper proposes a new channel normalization algorithm called
parametric cepstral mean normalization (PCMN) to increase robust-
ness of speech recognition to varying acoustic conditions. Rather
than using a simple average of input speech features as channel es-
timate, as done in the traditional CMN, PCMN weighs the running
average of input speech frames in a frequency dependent manner.
These weights are jointly optimized together with parameters of the
acoustic model training. Experimental results show that, in contrast
to traditional CMN, which degrades performance on clean data,
PCMN provides 5% relative improvement on clean data, while also
providing 11.2% relative improvement on far-field test data. We also
propose an adaptive version of PCMN, called aPCMN, where both
input speech features and channel estimates have weights. These
weights are computed at run time and they change dynamically
based on the input speech. aPCMN provides 13.0% relative im-
provement on far-field test set, while still maintaining 5% relative
improvement on clean data.

Index Terms— Robust automatic speech recognition, cepstral
mean normalization, channel normalization.

1. INTRODUCTION

Automatic speech recognition (ASR) has advanced significantly in
recent years thanks to advancements in deep learning based mod-
eling [1, 2, 3]. Indeed, ASR technology has reached a stage where
challenging applications have become a reality and has become
available to millions of users in the form of personal assistants in
smart phones and voice-controlled home devices. Even though ASR
systems work reasonably well in clean, close-talking conditions, its
performance degrades severely for noisy far-field settings. Far field
ASR is known to be a challenging problem due to enviromental
factors such as background noise, acoustic reverberation, and acous-
tic echo, and remains as an active area of research in the speech
community [4, 5, 6].

A common strategy for tackling far-field ASR is to incorporate a
front-end digital signal processing (DSP) block before speech signal
is fed to the acoustic model. The DSP block attempts to clean the
noisy far-field data by using techniques such as echo cancellation,
de-reverberation, noise suppression, and beam forming etc. While
the DSP block enhances far-field speech and improves ASR perfor-
mance substantially on such data, this performance is still signif-
icantly worse than its counterpart in clean or near-field condition.
Part of the reason for this is that the DSP block is not perfect and en-
hanced data still contains some residual noise and artifacts. Cepstral
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mean normalization (CMN) and spectral subtraction, which are tra-
ditional methods used to reduce noise and improve robustness, can
also be used here to further reduce the residual noise and improve
ASR performance.

Recently, there have been quite a few studies that focused
on joint optimization of some of the front-end processing stages
with acoustic model training. [7] proposed joint multi-microphone
enhancement and acoustic modeling, where beamforming filter co-
efficients are predicted by neural network layers which are jointly
trained with a CLDNN acoustic model, and achieved significant
WER reduction. In [8], a front-end called per-channel energy nor-
malization (PCEN) is proposed to improve robustness to loudness
variation, and it outperformed log-mel features on keyword spotting
task. In PCEN, parameters are jointly optimized with the acous-
tic model. To address robsutness against interfering speech, [9]
used an encoder network projecting an anchor word onto a fixed
size embedding, which is appended to acoustic feature vector. The
jointly trained encoder network and acoustic model provided sig-
nificant WER improvements over casual spectral subtraction and
hand-crafted anchored mean subtraction methods in the presence of
background speech. Our work is inspired by the successes of the
aforementioned work, whose common point was joint optimization
of the front-end processing with the acoustic model training.

In this work, we focus on the CMN step in far-field ASR
pipeline. We propose a novel approach called parametric cepstral
mean normalization (PCMN) that learns a channel normalization
factor jointly with the acoustic model training. PCMN takes a slid-
ing window cepstral mean estimate and weighs it in a frequency
dependent manner. To keep the model generic and handle dynamic
changes in input speech, we also introduce weights for the input
cepstral features. These weights in PCMN are learned jointly with
the rest of the acoustic model parameters to optimize ASR loss
function. We also propose an improved version of PCMN, called
adaptive PCMN (aPCMN), where weights are time dependent. In
other words, these weights are computed at runtime for each input
frame and changes dynamically based on the input signal. We per-
form extensive experiments on a variety of data sets to validate the
effectiveness of PCMN and aPCMN, and show that they are able to
improve over traditional CMN on a range of challenging far-field
datasets, while at the same time not causing any degradation on
clean data.

The remainder of this paper is structured as follows. PCMN and
aPCMN are described in Section 2 and 3, which are followed by
experiments and their results in Section 4. A conclusion is presented
in Section 5.

2. PARAMETRIC CEPSTRAL MEAN NORMALIZATION

Environment factors such as convolutive channel and additive noise
cause a shift in mean and variance of the input cepstral features [10].
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Fig. 1: Comparison of learned β (red) and α (blue) weights on different datasets. x-axis
shows index i, which is i = 1, ..., 40, and y-axis shows learned values.

Cepstral mean normalization is a widely used technique to compen-
sate the shift in mean caused by such environmental factors. One can
estimate the mean over an entire utterance, however this will cause
an unacceptable delay making it unfeasible for real time recognition
applications. Alternatively, the cepstral mean, µn, can be computed
over a sliding window of N frames as follows:

µn[i] =
1

N

n∑
m=n−N

Xm[i] (1)

where Xn[i] is the ith component of the cepstral feature vector at
time frame index n. Then, ceptral features are normalized as fol-
lows:

X̂n[i] = Xn[i]− µn[i] (2)

CMN is essentially a blind estimate; in a sense that it is not
learned and it doesn’t have any interaction with the acoustic model-
ing loss function. In this work, our goal is to learn a channel normal-
ization factor jointly with the acoustic model. One way to do this
is to learn a channel embedding using a neural network and use it
as an additional input to the acoustic model as done in [9]. Here,
we develop an approach that integrates the standard CMN channel
estimate into acoustic model training. This is achieved by replacing
the conventional CMN estimate µn, with a scaled and shifted ver-
sion αµn + µ0. The intuition behind this choice is that the CMN
estimate may potentially be noisy for certain frequency components.
Also, having µ0 is inspired by a warm start sliding window CMN,
where a cepstral mean computed on the training/dev set is used for
initialization. However, here all parameters includingµ0 are learned
jointly as part of acoustic model training. We also found it useful to
scale the input cepstral features, X, to the acoustic model as ex-
plained later in Section 3. Hence, the proposed PCMN model takes
the following generic form:

X̂n[i] = β[i].Xn[i]− {α[i].µn[i] + µ0[i]} (3)

Note that parameters β,α, and µ are all frequency dependent and
they are learned jointly as part of acoustic model training via back-
propagation using the acoustic modeling loss function.

In Figure 1, we present an analysis of the learned α and β
weights for clean training (150 hours of data) and multi-style training

(450 hours of data). We use 40 log Mel-filterbank features in our ex-
periments, hence i varies from 1 to 40 in Eq. 1-3. The top row of Fig.
1 shows the learned β parameters for two training set-up. We see
that as the amount of training data increases, β weights seem to con-
verge to 1.0. The second row of Fig. 1 shows the learned α param-
eters. We can see that only a few α[i] values are close to 1.0, while
most bins are scaled by smaller weights, which supports our hypoth-
esis that cepstral mean should be weighted in a frequency dependent
manner. Also, even though there was no constraint on the values of
parameters during training, with the larger set-up of 450 multi-style
training, learned α parameters converged to 0 6 α[i] 6 1 for all
i = 1, ..., 40.

These findings led us to consider a simplified version of PCMN
model where we set β =  andµ = , and only learnα. From our
experiments we found that the performance of the simplified model
was comparable to that of the full model. In this simplified model,
if we further assume that α is replaced with a scalar α such that
0 6 α 6 1 , then the model essentially acts as a gate deciding either
to subtract the cesptral mean or not. In other words, when α = 0,
the method is equivalent to no-CMN, and when α = 1 it is equiv-
alent to traditional CMN; hence PCMN becomes an interpolation
of no-CMN and CMN. In the rest of the paper, the complete set of
PCMN parameters,α, β, andµ, is learned as part of training while
reporting experimental results with PCMN.

3. ADAPTIVE PCMN

Trainable parameters of the PCMN layer are fixed after training and
do not change for different input signals. This feature is interest-
ing because the learned global set of parameters from the training
data can improve CMN-based channel estimation. However, instead
of learning a set of global parameters, we could also formulate the
model so that parameters adapt dynamically to the input speech to
better handle dynamic channel and/or noise changes. Hence, we pro-
pose adaptive PCMN (aPCMN) method, where parametersα,β,µ

are time dependent, and they are conditioned on the input signal.
This dependency is achieved by using a linear projection layer as
follows:

[βn,αn,µn,0] =W ·Yn + b, (4)

where Yn = [Xn−10,Xn−9, ...,Xn,Xn+1, ...,Xn+10] spliced
cepstral features. W and b are learned jointly with the rest of the
acoustic model parameters. One trick we use during training is a
similar strategy to conditional batch-normalization proposed in [11],
where instead of directly outputting βn we output β̂n = + βn to
avoid potentially zeroing out the input cepstral features.

With aPCMN, our goal is to better handle dynamic changes that
may happen in channel and/or users’ speech characteristics. One
particular case we would like to tackle is ducking, which is a fea-
ture used with home speaker devices. While the device is playing
back audio, once it is triggered using a trigger phrase, the playback
volume is ducked, in other words lowered drastically. This duck-
ing causes dynamic changes both in users’ speech and also in the
DSP residual noise. For example, we observed that when the far-
field device is playing music, usually users tend to start speaking
to the device loudly, as soon as the device ducks, then users adjust
and lower their voice. Similarly, ducking makes the DSP residual
noise dynamically varying. aPCMN can handle these kind of dy-
namic changes that may happen in the channel and in users’ speech
characteristics by adjusting α and β for each time frame.

Figure 2 shows the evolution of α[i] weights for i = 6, 18, 32
frequency bins over the duration of a noisy recording. These plots
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Fig. 2: Evolution of α weights over time for different frequency bins out of 40 bins.
Red = bin 6, blue = bin 18, green = bin 32. X-axis shows time in terms of frame number.

.

change from utterance to utterance since the model is adaptive .
For this recording, there was music playing back from the far-field
home speaker, and the device was triggered by the user around 200th

frame, hence the music playback level was drastically reduced after
that. As seen in the graph, the model is adapting to this change by
lowering α weights over time, basically reducing the effect of cep-
stral mean being subtracted. Similarly, the evolution of β[i] is shown
in Fig. 3 for i = 6, 18, 32 frequency bins. The β weights are be-
having in an opposite way; β increases after ducking to compensate
for the lowered volume of the users voice and this is more prominent
with the green plot, which is the 32nd bin. Also, we see that the
scaling for a given frequency changes significantly over the course
of an utterance, showing that the adaptive model is able to adapt to
changing channel and user speech characteristics.

4. EXPERIMENTAL SETUP

Initial experiments were conducted using an in-house multi-style
dataset consisting of 450 hours of speech. Later results obtained us-
ing 6,000 hours of multi-style training data, and 9,000 hours of real
far field home-speaker data are also presented. For the multi-style
training, training data consisted of three subsets, including 1/3rd rel-
atively clean speech. We made one copy of this set by convolving the
data with 3500 room impulse responses (RIRs) collected from a va-
riety of real rooms to simulate reverberated speech, and another copy
by adding echo-residual to reverberated speech. The echo residual
contains the residual noise that remains after the DSP block when
the device is playing back varying audio such as music and podcast.

For the sliding-window mean estimation, we estimate the mean
using up to 600 past frames (e.g. 6 sec) with a minimum window
of 100 frames for the first 100 frames. 40 dimensional log mel-
filterbank features used in experiments, which are extracted every
10ms with a 25ms window. The following four systems were built:
(a) Baseline DNN based acoustic model without any channel nor-
malization, (b) with sliding-window CMN normalization (c) with
PCMN, and (d) with adaptive-PCMN (aPCMN). All fully connected
DNNs had 6 layers, sigmoid activation, and 1024 hidden units per
layer. The size of the output layer was 8419. Inputs to DNN were
whitened with the corresponding global mean and variances and

Fig. 3: Evolution of β weights over time for different frequency bins out of 40 bins.
Red = bin 6, blue = bin 18, green = bin 32. X-axis shows time in terms of frame index.

spliced with +/- 10 frames of context; hence DNN input layer takes
840 dimensional feature vector. All models were trained using the
cross-entropy loss function.

We evaluate our models on a relatively clean test set, this data
consists of real-world data, and do contain some amount of acoustic
and/or label noise. We also test our models on a number of far-field
test sets. The dataset named reverb was simulated by convolving the
clean test set with real RIRs. Care was taken to ensure that there is no
overlap between the RIRs used in our training set and test one. We
also used a simulated test set, called duck, where audio ducking takes
place. First, far-field speech and echo data was recorded separately
using a home-speaker device in varying room settings. Then speech
with echo was created by adding recorded far-field speech to the
recorded echo signal which was ducked once the triggering phrase
was detected in speech signal. Music and podcast audio was used in
echo-only recordings. After the mixture was created, it was passed
through the DSP block for echo cancellation, de-reverberation, noise
suppression, and beamforming, to enhance speech signal. Finally,
two real-world far-field data sets, called ffield and ffield-2, were used
for experimenting. Note that the test-sets referred as clean and reverb
haven’t been processed through the DSP block.

We present our experimental results using 450 hrs of multi-
condition training data in Table 1. As expected, while traditional
CMN improves recognition accuracy over the baseline model on
all far-field test sets (8.9% relative on average), it degrades per-
formance on the clean set (-3.9%). On the contrary, both PCMN
and aPCMN models improve over the baseline on both clean and
far-field data sets. PCMN provides 5% relative improvement on
clean data, and on average 11.2% relative improvement on far-field
test sets. aPCMN improves results further on far-field data sets by
providing 13.0% average relative improvement over the baseline.
PCMN outperforms CMN by a significant margin on all test sets,
and the adaptive extension of the model aPCMN performs better
than PCMN especially on the ducking test set that exhibit dynamic
channel changes.

In Table 2, we present results when the cepstral mean was esti-
mated using entire utterance instead of sliding-window to see the up-
per bound of the system. All three methods CMN, PCMN, aPCMN
performs better when the cepstral mean is estimated using entire ut-
terance instead of sliding-window approximation for clean and its
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Model clean reverb ffield duck Ave.

NoNorm 17.8 25.6 18.2 26.4 −
CMN 18.5 25.1 15.9 23.2 −

PCMN 16.9 23.6 16.2 22.5 −
aPCMN 16.9 23.4 15.8 21.8 −

Relative Improvement
CMN −3.9 +1.9 +12.6 +12.1 +8.9

PCMN +5.0 +7.8 +11.0 +14.7 +11.2
aPCMN +5.0 +8.5 +13.2 +17.4 +13.0

Table 1: Results, where cepstral mean is computed over a sliding window.

reverb data. However, aPCMN that uses a sliding window cepstral
mean was the best performing method on ducking and ffield test
sets, outperforming its utterance-level counterpart. This observation
suggests that for recordings with dynamic channel characteristics, a
shorter, more dynamic channel estimate may work better.

Model clean reverb ffield duck Ave.

NoNorm 17.8 25.6 18.2 26.4 −
CMN 18.6 24.8 16.1 22.4 −

PCMN 16.6 22.8 16.1 22.2 −
aPCMN 16.6 22.9 16.2 22.2 −

Relative Improvement
CMN −3.9 +3.1 +11.5 +15.1 +9.9

PCMN +7.2 +10.9 +11.5 +15.9 +12.8
aPCMN +7.2 +10.8 +11.3 +15.9 +12.7

Table 2: Results, where cepstral mean is computed over entire utterance.

Next, we present experimental results using 6,000 hours of
multi-style training data in Table 3. As shown in Table 3, aPCMN
provides significant improvement across all far-field noisy test sets
(average 10.6% relative improvement), while still providing 4.7%
improvement on clean test-set.

Model clean reverb ffield duck ffield-2 Ave.

NoNorm 15.0 19.5 11.8 16.4 14.0 −
CMN 14.7 18.9 10.4 15.3 12.2 −

aPCMN 14.3 18.5 10.4 14.8 11.8 −
Relative Improvement

CMN 2.0 +3.1 +11.9 +6.7 +12.9 +8.7
aPCMN +4.7 +5.1 +11.9 +9.8 +15.7 +10.6

Table 3: Results using 6,000 hours of multi-style straining data

Finally, we conducted experiments using 9,000 hours of real far
field home-speaker data using sliding-window CMN and aPCMN.
For a stronger baseline, we use a model topology that includes two
convolution layers and eight fully connected layers with 1024 acti-
vation units. Each convolution layer has 128 two-dimensional filters
and there is a max pooling in between them. The model was trained
using cross entropy loss function. Also, a well matched language
model that is trained with in-domain data is used for these experi-
ments. Results are shown in Table 4. In line with other experimental
results, aPCMN provides 8.9% relative improvement over sliding-
window CMN on real far field home-speaker test data.

Table 4: Results using 9,000 hours of real far-field home-speaker training data

Model ffield-2
CMN 5.6

aPCMN 5.1

5. CONCLUSION

In this paper, we present a novel parametric cepstral mean normal-
ization method for robust far-field ASR. Our key insight is that by
learning the channel normalization jointly with the acoustic model
we are able to improve ASR performance for noisy far-field condi-
tions. PCMN model is a flexible framework that improves perfor-
mance on both clean and far-field data, while only adding a small
number (120) of parameters to the model. We found that making the
model adaptive leads to further improvement with far-field data.

As part of our future work, we plan to train PCMN and aPCMN
models with sequence training criteria.
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