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ABSTRACT
Hidden Markov models (HMMs) have a long tradition in automatic
speech recognition (ASR) due to their capability of capturing tempo-
ral dynamic characteristics of speech. For emotion recognition from
speech, three HMM based architectures are investigated and com-
pared throughout the current paper, namely, the Gaussian mixture
model based HMMs (GMM-HMMs), the subspace based Gaussian
mixture model based HMMs (SGMM-HMMs) and the hybrid deep
neural network HMMs (DNN-HMMs). Extensive emotion recogni-
tion experiments are carried out on these three architectures on the
CASIA corpus, the Emo-DB corpus and the IEMOCAP database,
respectively, and results are compared with those of state-of-the-art
approaches. These HMM based architectures prove capable of con-
stituting an effective model for speech emotion recogntion. Also,
the modeling accuracy is further enhanced by incorporating various
advanced techniques from the ASR area. In particular, among all of
the architectures, the SGMM-HMMs achieve the best performance
in most of the experiments.

Index Terms— Speech emotion recognition, hidden Markov
models, subspace based GMM, hybrid DNN-HMM

1. INTRODUCTION

Speech emotion recognition aims at detecting the underlying emo-
tional state of the speaker from his or her speech. Especially in the
field of human-machine interaction (HCI), growing interest can be
observed in recent years. In addition, the detection of lies, monitor-
ing of call centres and psychological consultations are often claimed
as promising application scenarios for speech emotion recognition.

In emotion classification of speech signals, the popular features
employed are statistics of fundamental frequency (pitch), spectral
shape and energy contour. These statistical measures are gener-
ally estimated over the whole utterance, and thus termed global fea-
tures. Several studies find a high correlation between some statistics
of speech and the emotional state of the speaker [1–3]. However,
using global features also presents several drawbacks: first, as is
well known, emotional information conveyed by speech is inherently
sequential, while taking global statistics ignores such temporal be-
haviour; second, the performance of systems employing these global
features generally degrades substantially when more than two cate-
gories of emotion are to be classified [4]; and third, the recognition
process can only be performed once the whole utterance has been
pronounced, which limits the capability of building real time recog-
nisers.

A different approach to global statistics is to use frame based raw
features such as Mel Frequency Cepstrum Coefficients (MFCCs),
energy or pitch. For the purpose of explicitly performing temporal
modeling based on these raw features in order to better exploit the
dynamic information of emotional speech, dynamic models, such
as hidden Markov models (HMMs) [5–8], are frequently consid-
ered. HMMs have formed the core of statistical ASR for over three

decades. The underlying idea is that speech signals are not station-
ary and can be modeled as a concatenation of HMM states, with
each modeling different sounds or sound combinations and having
their own statistical properties. In addition to HMMs, recurrent neu-
ral networks (RNNs), e.g., with long short-memory (LSTM) [9],
are also effective at dynamic modeling, and a growing trend ex-
ists to apply LSTM based architectures for speech emotion recog-
nition [10–13]. The main advantage of HMMs over these emerging
LSTMs for speech emotion recognition is that HMM based archi-
tectures have long been studied in the ASR area, comprising avail-
able and well established procedures for optimizing the recognition
framework, e.g., Viterbi decoding, sequential discriminative train-
ing, speaker adaptive training, etc.

In this work, we extend beyond feature selection and explore
three HMM based architectures for text-independent speech emo-
tion recognition. The first one is the classic Gaussian mixture model
based HMMs (GMM-HMMs), in which GMMs serve as state ob-
serving functions. For the last few decades, GMMs have been the
most widely-utilized density functions for likelihood computation in
ASR. However, conventional GMMs in HMM possess several major
shortcomings. For instance, they generally involve training a com-
pletely separate GMM in each HMM state, which may suffer from an
over-fitting problem in applications, such as speech emotion recog-
nition, where there is usually a small amount of (in-domain) training
data. To deal with this over-fitting issue, we investigate the subspace
based Gaussian mixture model based HMMs (SGMM-HMMs), in
which the HMM states share a common structure, whereas the mean
and mixture weights are allowed to vary in a subspace of the full pa-
rameter space, controlled by the projection vectors of low dimension.
This leads to a significant decrease in the total number of parameters,
which we conjecture might offer an advantage in emotion recogni-
tion tasks. To the best of our knowledge, this is the first attempt to
investigate SGMM-HMM for speech emotion recognition.

Another limitation of GMMs (or SGMMs) in HMM is that they
are statistically inefficient for modeling data that lie on or near a
nonlinear manifold in the data space [14]. Therefore, we replace
the GMMs (or SGMMs) with a deep neural network (DNN) to es-
timate the (scaled) observation likelihood, which forms the hybrid
deep neural network HMM (DNN-HMM) structure. The DNN is
capable of capturing the underlying nonlinear relationship among
data, and can be viewed as a powerful discriminative feature extrac-
tor mining high-level representations optimized to predict the emo-
tion class [15].

The remainder of this paper is organized as follows. In Section
2, we briefly describe three HMM based architectures, and present
basic concepts of how they are applied to speech emotion recogni-
tion tasks. In Section 3, we briefly describe three popular emotional
corpora on which extensive experiments are conducted. In Section
4 experimental results using these three emotional corpora are dis-
cussed. Finally, Section 5 draws conclusions and outlines directions
for future work.
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2. HMM BASED ARCHITECTURE FOR SPEECH
EMOTION RECOGNITION

Hidden Markov models (HMMs) have been successfully applied as
a core for statistical acoustic models in many systems. An HMM is a
generative model in which the system being modeled is assumed to
be a Markov process with hidden states (such as emotion-dependent
states, hidden in the speech signal). A typical HMM, represented as
λ = (A,B,π), consists of the following elements:

1. State sequence S = {s1, s2, ..., sQ}, where Q is denoted as
the number of states in each HMM model, usually from 3 to
5, and qt ∈ {s1, s2, ..., sQ} is the HMM state at time t.

2. Transition probability matrix A = {aij}, with aij = P (qt =
sj |qt−1 = si), 1 ≤ i, j ≤ Q.

3. Observation functions B = {bi(ot)}, where bi(ot) repre-
sents the probability of observing ot at state si, 1 ≤ i ≤ Q.

4. Initial state distribution π = {πi}, where πi = P (q1 = si),
1 ≤ i ≤ Q.

In this work, we develop C HMMs {λc, (c = 1, ..., C)} for C
discrete emotions, where C varies among database. For an unknown
input speech utterance O, it is assigned to the emotion label

c∗ = argmax
1≤c≤C

P (O|λc) (1)

where P (O|λc) is calculated using the Viterbi algorithm.

2.1. GMM-HMM Based Speech Emotion Recognition

In GMM-HMM, the observation function for the HMM state si is
defined as a weighted sum of Mi multivariate Gaussian functions:

bi(ot) = P (ot|qt = si) =

Mi∑
l=1

ωilN (ot|µil,Σil) (2)

where N (ot|µil,Σil) is a Gaussian component with mean vector
µil and covariance matrix Σil. For a feature vector ot of dimension
n:

N (ot|µil,Σil) =
exp{− 1

2
(ot − µil)

TΣ−1
il (ot − µil)}√

(2π)n|Σil|
(3)

ωil denotes the mixture weight of Gaussian component l of state
si, and the weights are subject to

∑Mi
l=1 ωil = 1.

2.2. SGMM-HMM Based Speech Emotion Recognition

The GMM-HMM based framework generally involves training a
completely separate GMM in each HMM state, which might suffer
from over-fitting, especially for tasks such as speech emoition recog-
nition, in which the amount of (in-domain) data available to train the
model is often limited. To mitigate this problem, we introduce the
subspace based GMM-HMM (SGMM-HMM), which was originally
motivated by subspace-based speaker adaptation and speaker veri-
fication approaches [16]. In SGMM-HMM the HMM states share
a common structure, whereas the mean and mixture weights are
allowed to vary in a subspace of the full parameter space, controlled
by the projection vectors of low dimension, thus providing a more
compact model representation.

SGMM uses the state-independent covariance matrix of the
universal background model (UBM), and computes state-dependent
means by linearly projecting the means of UBM. Let us define UBM

as a GMM with means and covariances {ml,Σl}, with l denoting
the GMM component number. Compared to the GMM density com-
putation (Equation 2), the observation function for a SGMM-HMM
at some state si has the following form:

bi(ot) = P (ot|qt = si) =

M∑
l=1

ωilN (ot|µil,Σl) (4)

It is worth noting that Equation 4 differs from Equation 2 in that
the covariance matrix for each GMM component is shared between
states in SGMM-HMM, whereas it is state-dependent in GMM-
HMM.

The SGMM mean vector µil in Equation 4 is computed using
linear subspace projection matrix Ml and projection vector vi for the
state si:

µil = ml + Mlvi (5)

and the mixture weights are computed from linear subspace projec-
tion vector wl and the same sate-dependent projection vector vi:

ωil =
exp{wT

l vi}∑M
j=1 exp{wT

j vi}
(6)

2.3. DNN-HMM Based Speech Emotion Recognition

The GMM-HMMs or SGMM-HMMs are statistically inefficient to
model non-linear data in the feature space. We overcome this restric-
tion by using deep neural networks, which can model complex and
non-linear relationships between low-level acoustic features. Based
on this, we have developed a hybrid DNN-HMM based architecture
for speech emotion recognition, in which the GMMs (or SGMMs)
are replaced with DNN to estimate the observation probabilities of
input acoustic features at each HMM state. If DNNs can be trained
to better predict emotional HMM states, then the DNN-HMM based
model can achieve better recognition accuracy than GMM-HMMs
or SGMM-HMMs.

DNN-HMMs can be trained using the embedded Viterbi algo-
rithm. Specifically, in our implementation, we firstly train a Left-
Right GMM-HMM model with five states for each emotion class
using the training utterance. Then, for each utterance in the training
set, the Viterbi algorithm is performed to obtain an optimal state se-
quence, and each state is assigned a label according to a state-label
mapping table. All of the training utterances, combined with their la-
beled state sequence, are then fed as inputs to train a DNN using the
mini-batch based gradient descent method. The outputs of the DNN
are the posterior probabilities of the C ×Q output units, with C and
Q denoting the emotion class number and HMM state number, re-
spectively. Then according to the Bayesian theorem, the observation
probability p(ot|qt) is calculated as follows:

p(ot|qt) =
p(qt|ot)p(ot)

p(qt)
(7)

where p(qt) is estimated from an initial state-level alignment of the
training set; and p(ot) is independent of the state sequence, and thus
can be ignored.

3. SPEECH CORPORA

We use three corpora of acted emotions to evaluate the validity and
universality of our approach: a Chinese emotional corpus (CASIA),
a German emotional corpus (Emo-DB), and an English emotional
database (IEMOCAP), which are summarized in Table 1.
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More specifically, the CASIA corpus contains 9,600 utterances
that are simulated by four subjects (two males and two females) in
six different emotional states, namely, anger, fear, happiness, neutral,
sadness and surprise. In our experiments, we only use 7,200 utter-
ances that correspond to 300 linguistically neutral sentences with the
same statements. All of the categories of emotions are selected.

The Emo-DB corpus was produced by 10 professional actors
(five males and five females) in German to simulate seven different
emotions. The number of spoken utterances for these seven emo-
tions in the Berlin Emo-DB is not equally distributed: 127 anger, 81
boredom, 46 disgust, 69 fear, 71 joy, 79 neutral, and 62 sadness. In
our experiments, five categories of emotions are selected, i.e., anger,
boredom, joy, sadness and neutral. Thus, a total number of 420 ut-
terances are used in this study.

The IEMOCAP database was collected using motion capture
and audio/video recording over five dyadic sessions with 10 subjects.
At least three evaluators annotated each utterance in the database
with the categorical emotion labels chosen from the set: anger, dis-
gust, excitement, fear, frustration, happiness, neutral, sadness, sur-
prise and other. We consider only the utterances with majority agree-
ment (i.e., at least two out of three evaluators assigned the same emo-
tion label) over the emotion classes of: anger, happiness, neutral and
sadness.

Table 1. Overview of the selected emotion corpora. (#Utterance:
number of utterances used, #Subjects: number of subjects, and
#Emotion: number of emotions used.)

Language #Utterance #Subjects #Emotion

CASIA Chinese 7,200 4 (2 female) 6

Emo-DB German 420 10 (5 female) 5

IEMOCAP English 5,347 10 (5 female) 4

4. EXPERIMENTS AND RESULTS

4.1. Experimental Settings

In our experiments, each input signal is converted into frames by us-
ing a 25 ms window sliding at 10 ms each time. 15 MFCCs (with
C0 replaced with energy) are then extracted from each frame, with
a Hamming window to minimize frequency leakage. Cepstral mean
variance normalization (CMVN) is performed at the utterance level
to mitigate recording variations. We have also taken the first- and
second-order derivatives of the normalized MFCCs. In addition to
MFCCs, which can be considered as strong correlates of the vocal
tract, pitch and voicing probability are also extracted to reflect vocal
cord variations, providing complementary information for recogniz-
ing emotions. Therefore, the dimension of features for each frame is
47 (i.e., 15 × 3 + 1 + 1). Compared to many of the state-of-the-art
approaches involving large feature set construction, our feature set
is simple and straightforward.

For the DNN-HMM hybrid, the DNN architecture consists of
one input layer, three hidden layers, followed by one softmax loss
layer. Network configuration (ordered from input to output) is set
to {47, 256, 256, 256, N}, where ‘47’ and ‘N ’ correspond to the
dimension of the input features and the total number of state labels,
respectively. A hyperbolic tangent non-linearity is applied between
two consecutive hidden layers. Frame classification training is based
on mini-batch Stochastic Gradient Descent (SGD), optimizing frame
cross-entropy. The initial learning rate of 0.015 is gradually de-
creased to 0.002 after 20 epochs. This DNN configuration was found
to be optimal after experimenting with different sized configurations.

Our experiments are implemented on Kaldi [17], which is an
open source ASR toolkit. We find that it is relatively easy to develop
these HMM based architectures for speech emotion recognition by
adapting the existing Kaldi recipes, based on which we can make
use of several advanced technologies from the ASR area, e.g., HMM
state tying, speaker adaptive training (SAT) and sequential discrimi-
native training (SDT).

All of the three corpora do not split training data and testing
data in advance, so that two experimental strategies are used. They
are speaker-dependent (SD) and speaker-independent (SI). For the
speaker-dependent strategy, in each database, we randomly select
80% of the speech sentences as the training set, 10% as the devel-
oping set to identify the optimal parameters and the rest 10% as the
testing set. In the speaker-independent strategy, the K-folds leave-
one-speaker-out cross-validation method is carried out, whereK de-
notes the number of speakers in each database. For each fold, the
utterances from one speaker are used as the testing set, and the utter-
ances from the other speakers are used as the training set.

4.2. Results and Analysis

We first developed three GMM-HMM systems using: (1) mono-
phone training; (2) monophone training with state tying based on
the data-driven decision tree; and (3) System (2) with speaker adap-
tive training applied using feature space maximum likelihood lin-
ear regression (fMLLR) transformation. In our study, speaker adap-
tive training is applied per speaker to adapt the emotion variation
of different speakers. Based on these monophone GMM-HMMs,
two SGMM-HMM systems were then developed: (4) SGMM-HMM
based on System (3); and (5) SGMM-HMM system with sequen-
tial discriminative training (SDT) applied using maximum mutual
information (MMI) criterion. We also built two systems using the
DNN-HMM hybrid architecture: (6) DNN-HMM using an align-
ment generated from the tied-state monophone GMM-HMM; and
(7) DNN-HMM using an alignment generated from SGMM-HMM.
Extensive recognition experiments were conducted on the above (1)-
(7) systems, as shown in Table 1. Both weighted accuracy (WA)
and unweighted accuracy (UA) are used for perfomance evaluation.
Weighted accuracy is the total number of correctly classified test-
ing samples of all classes averaged by the total number of testing
samples, and unweighted accuracy is the sum of all class accuracies
divided by the number of classes, without considering the number
of instances per class, which better reflects overall accuracy in the
presence of an imbalanced class.

Table 2 summarizes the performance comparison between dif-
ferent HMM-based systems on three corpora. As can been seen: (1)
SGMM-HMM based systems achieved the best results in most of
the experiments. This is because SGMM can provide more compact
representation than the other two observation functions and thus
mitigate the over-fitting problem caused by the limited amount of
emotional data. It is worth noting that for the smallest Emo-DB
database, SGMM-HMM obtained the best results in all experiments,
which further demonstrates the effectiveness of SGMM-HMM when
only limited training data are available. (2) For some of the experi-
ments that involve the CASIA corpus and the IEMOCAP database,
hybrid DNN-HMM achieved the highest recognition rates, espe-
cially for the speaker-dependent task on the CASIA corpus, where
DNN-HMM significantly outperforms the other two HMM architec-
tures. This is mainly due to the discriminative power of the deeply
learned features introduced by DNN. (3) However, for the speaker-
independent task on the same CASIA corpus, the performance of
using DNN-HMM degraded by a large margin. This might be at-
tributable to the fact that, in this experiment, recognition rates from
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Table 2. Comparison of UAs and WAs on different HMM based architectures on CASIA corpus, Emo-DB corpus and IEMOCAP database,
respectively. (ST: HMM state tying, SAT: speaker adaptive training, MMI: sequential discriminative training with maximum mutual informa-
tion criterion, GMM-Ali.: alignment generated from monophone GMM-HMM, and SGMM-Ali.: alignment generated from SGMM-HMM.)

Speaker-dependent Speaker-independent
CASIA Emo-DB IEMOCAP CASIA Emo-DB IEMOCAP

UA [%] WA [%] UA [%] WA [%] UA [%] WA [%] UA [%] WA [%] UA [%] WA [%] UA [%] WA [%]
(1) GMM-HMM 76.60 76.60 77.45 82.14 61.59 59.59 44.31 44.31 85.02 86.43 57.65 53.00
(2) GMM-HMM(ST) 79.93 79.93 81.15 83.33 63.51 61.93 46.33 46.33 86.15 87.38 59.54 53.80
(3) GMM-HMM(ST+SAT) 83.26 83.26 83.95 85.71 64.33 63.33 50.44 50.44 85.50 87.38 60.25 55.00
(4) SGMM-HMM 86.88 86.88 88.25 90.48 66.63 64.83 53.81 53.81 86.23 87.62 61.77 56.40
(5) SGMM-HMM(MMI) 87.50 87.50 − − 66.94 65.86 52.69 52.69 − − 62.23 57.20
(6) DNN-HMM(GMM-Ali.) 90.74 90.74 64.38 69.56 65.20 64.66 38.35 38.35 64.69 65.28 57.12 60.13
(7) DNN-HMM(SGMM-Ali.) 91.32 91.32 64.60 71.43 65.12 64.17 39.40 39.40 64.71 67.38 58.02 62.28

both GMM-HMM and SGMM-HMM systems were very low, and
the alignments generated from both systems were quite poor. Using
such un-reliable state-level alignments as training labels for DNN
can impart great harm to the DNN-HMM system. (4) On the other
hand, using a better alignment to generate training labels for the
DNN can improve accuracy. This is confirmed by the observation
that DNN-HMM using alignments generated from SGMM-HMM
generally achieved better results than those of DNN-HMM using
alignments generated from GMM-HMM. (5) Using advanced tech-
nologies from ASR, i.e., HMM state tying, speaker adaptive training,
and sequential discriminative training (MMI), greatly boosted per-
formance, which constitutes an enormous advantage of HMM based
architectures over other methods.

Table 3. Comparison of recognition accuracy on CASIA. (SD:
speaker-dependent, and SI: speaker-independent.)

Methods for comparison SD [%] SI [%]

Sun et al. [18] (2015) 85.08 43.50
Wen et al. [19] (2017) − 48.50
Liu et al. [20] (2018) 89.60 −
Liu et al. [21] (2018) 90.28 38.55

Our method

GMM-HMM(ST+SAT) 83.26 50.44
SGMM-HMM 86.88 53.81
DNN-HMM(SGMM-Ali.) 91.32 39.40

Table 4. Comparison of WAs on Emo-DB for SI task. (#Emo.:
number of emotions used in each experiment.)

Methods for comparison #Emo. WA [%]

Li et al. [22] (2016) 4 86.38
Zhu et al. [23] (2017) 5 74.12
Semwal et al. [24] (2017) 6 80.00
Wen et al. [19] (2017) 7 82.32

Our method

GMM-HMM(ST+SAT) 5 87.38
SGMM-HMM 5 87.62
DNN-HMM(SGMM-Ali.) 5 67.38

Tables 3-5 compare our result with prior work on three corpora,
respectively. For the CASIA corpus, our DNN-HMM hybrid archi-
tecture achieved the highest recognition accuracy of 91.32% on the
SD task, while SGMM-HMM surpassed other methods on the SI
task. It is worth noting that the gap of recognition rates between SD
and SI tasks on CASIA is much larger than that of the other two cor-

Table 5. Comparison of UAs and WAs on IEMOCAP for SI task.
Methods for Comparison UA [%] WA [%]

Han et al. [25] (2014) 48.20 54.30
Huang et al. [11] (2016) 49.96 59.33
Ma et al. [26] (2017) 62.54 57.85
Mirsamadi et al. [12] (2017) 58.80 63.50
Luo et al. [27] (2018) 63.98 60.35

Our Method

GMM-HMM(ST+SAT) 60.25 55.00
SGMM-HMM(MMI) 62.23 57.20
DNN-HMM(SGMM-Ali.) 58.02 62.28

pra. This is mainly because there is only four speakers in CASIA
(see Table 1). Hence for each fold, we only have training utterances
from three speakers, which limits the generalization capability to ut-
terances from an unseen speaker. Table 4 compares weighted accu-
racy (WA) on the Emo-DB corpus for the SI task. It is worth noting
that the systems differ in number and type of emotions. Neverthe-
less, it provides a basic comparison of the different approaches. For
the IEMOCAP corpus, which might be the most challenging dataset,
our HMM based architecture also achieved a comparable result with
that of state-of-the-art approaches for SI task, as shown in Table 5.
As mentioned previously, our study only used a simple feature set
consisting of MFCCs, pitch and voicing probability, with a dimen-
sion of less than 50. On the other hand, other state-of-the-art ap-
proaches generally used a much more complex feature set, i.e., [26]
used the INTERSPEECH 2009 Emotion Challenge feature set with
a dimension of 384 for recognizing emotions on the IEMOCAP cor-
pus. This further demonstrates the effectiveness of the HMM based
architectures used in our study.

5. CONCLUSIONS

We believe that this contribution presents important results concern-
ing speech emotion recognition with hidden Markov model based
architectures, namely, GMM-HMMs, SGMM-HMMs, and DNN-
HMMs. Extensive experiments were carried out on these HMMs
on the CASIA corpus, the Emo-DB corpus and the IEMOCAP
database, respectively, and showed comparable results with those
of state-of-the-art approaches. Thus, HMM is proven not to be
outdated, but instead a considerably effective method for automatic
recognition of human emotions in speech. Since we only used a sim-
ple feature set in this study, in our future work we aim to perform
more fundamental research on acoustic features, which should be
more robust to environment and speaker variations. More advanced
DNN architectures will also be investigated in the near future.
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