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ABSTRACT

Despite the great advances, most of the recently developed automatic
speech recognition systems focus on working in a server-client man-
ner, and thus often require a high computational cost, such as the
storage size and memory accesses. This, however, does not satisfy
the increasing demand for a succinct model that can run smoothly
in embedded devices like smartphones. To this end, in this paper
we propose a neural network compression method, in the way of
quantizing the weights of the neural networks from the original full-
precised values into binary values that then can be stored and pro-
cessed with only one bit per value. In doing this, the traditional
neural network-based large-size speech emotion recognition models
can be greatly compressed into smaller ones, which demand lower
computational cost. To evaluate the feasibility of the proposed ap-
proach, we take a state-of-the-art speech emotion recognition model,
i. e., convolutional recurrent neural networks, as an example, and
conduct experiments on two widely used emotional databases. We
find that the proposed binary neural networks are able to yield a re-
markable model compression rate but at limited expense of model
performance.

Index Terms— binary neural network, compact convolutional
recurrent neural network, speech emotion recognition, green com-
puting

1. INTRODUCTION

Automatic Speech Emotion Recognition (SER) has become one of
active research topics over the past decades in both academic and in-
dustrial communities, due to its widespread applications in, such as
natural and friendly human–machine communication [1–3]. Thanks
to the tremendous success of deep learning in image and speech pro-
cessing [4, 5], nowadays it has been frequently employed for SER
as well, and continually reported to achieve the most state-of-the-art
performance [6–12]. For example, Wöllmer et al. [13] took tempo-
ral dynamics of speech signal into account and extracted the long-
dependent context utterance-level features using Long Short-Term
Memory Recurrent Neural Networks (LSTM-RNNs). Han et al. [6]
utilized Deep Neural Networks (DNNs) to estimate the segment-
level emotion state probability distribution. This distribution is then
used to compute an super-segment-level feature which are fed into
an Extreme Learning Machine (ELM) for a final emotion state pre-
diction. Mao et al. [7] used Convolutional Neural Networks (CNNs)
to learn the salient affective features automatically which are robust
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and discriminative to emotion recognition. Chen et al. [10] utilized
Convolutional Recurrent Neural Networks (CRNNs) with an atten-
tion model to learn discriminative features for SER.

All these developments have greatly advanced SER, which fur-
ther facilitated its applications in real-life scenarios. However, it has
to be noticed that almost all these systems were mainly designed in
a server-client (central) manner [14]. That is, the models have been
innovated to achieve better recognition performance, but without any
consideration on the consumption of computational resource. Once
models are trained, they are moved to the server (or cloud) side,
where the powerful computational resource is often available. The
data collected from the client side are then delivered to the server
side through Internet for SER. Despite the efficiency of this frame-
work, it suffers from many issues in realistic applications, includ-
ing: i) privacy protection. The speech data collected from users are
considered to be extremely private, as it may not only contain the
emotion information that one needs, but also other highly sensitive
information. To cope with this issue, some research has been done.
For example, Zhang et al. [14] have intended to transfer vector quan-
titized statistic features rather than raw signals to the server. Albeit
the irreversibility of these features, they still contain additional user
information like the user identification. ii) limited network band-
width. It is a common case where no Internet accessibility or limited
network bandwidth is available, which constraints the application of
SER systems.

All these issues highlight the necessity to shift the systems from
such a central framework into a distributed framework, where the
SER models can be run at individual devices, such as smartphones
and intelligent speakers. By doing this, there is no need to upload
the data and access the Internet, and thus the user private informa-
tion can be well-protected. Note that, these individual devices, how-
ever, often lack disk storage, memory size, and battery power. All
these analyses motivate us to compress the current SER models into
smaller ones.

In this paper, we proposed a binarization approach to cope with
the raised problem. Specifically, rather than using the full-precised
values (normally 32-bit) to present the neural network weights, we
prefer to using their binarized values, i. e., either +1 or −1. In do-
ing this, the model can be stored with less disk storage, and can
be processed in less computational complexity. To the best of our
knowledge, this is the first time to investigate the binary neural net-
work in the context of SER. Particularly, we selected the most re-
cently developed CRNN model [10] for our evaluation. Overall, the
main contributions of this paper include i) proposing a binarization
approach to compress the most developed SER model; 2) evaluat-
ing the feasibility and effectiveness of the proposed model on two
popularly used emotion databases.
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Fig. 1. The framework of the proposed compact convolutional recurrent neural network via binarization for speech emotion recognition,
which consists of a binary CNN, a binary LSTM-RNN, and a binary fully-connected network.

2. RELATED WORK

Although neural network-based models have received great success
in machine learning, the high requirement of computational cost
severely limits their capability to be run in low-power devices. To
address this problem, several methods have been proposed to reduce
the complexity of neural networks over the past few years [15, 16],
which can generally be grouped into binarization-based and pruning-
based approaches.

Binarization-based approaches attempt to replace the real-
valued parameters with binary values. The Binary Neural Networks
(BNNs) were firstly proposed in [16], where Courbariaux et al. ap-
plied deterministic and stochastic sign functions to obtain binary
weights in training. The authors further proposed to constraint the
weights and activations to +1 and −1, leading to a dramatic storage
reduction. Similar work was also done in [17], where Rastegari
et al. binarized filters and inputs of convolution layers. Unlikely,
pruning-based approaches believe that not all weights are useful for
inference processing [15, 18]. Thus, removing the redundant and
non-informative weights from the training network, the network size
will then be reduced. Typical work can be found in [15,18]. In more
details, Han et al. [15] removed the weights according to a threshold
value; whereas Chen et al. [18] implemented a hash function to
randomly group the weights.

Despite the importance of model compression as mentioned in
Section 1, in the context of speech processing, merely a handful of
research studies were reported. For instance, in [19], Xiang et al. in-
vestigated the binarized DNNs for speech recognition. To date, there
is no related studies in the SER literature, to our knowledge.

3. BINARY CONVOLUTIONAL RECURRENT NEURAL
NETWORKS

In this work, we propose a novel Binary Convolutional Recurrent
Neural Network (BCRNN) model for speech emotion recognition.
As shown in Fig. 1, the model consists of a Binary Convolution
Neural Network(BCNN), cascaded by a Binary Recurrent Neural
Network (BRNN) and a Binary Fully Connected (BFC) layer. In
this section, we detail the binarization function, which is the core
operation of the proposed model. Then, we describe how to apply
the function to construct BCNN, BRNN, and BFC, respectively. Fi-
nally, we discuss how we back propagate through these binarized

neural networks.

3.1. Deterministic Binarization Function

Following previous work in [20], we employ the deterministic bina-
rization function to constraint real-valued variables to either +1 or
−1. Given a real-valued variable x, the function can be expressed
as:

b = sign(x) =

{
+1 if x ≥ 0,

−1 otherwise,
(1)

where b is the corresponding binarized variable. In other words, b is
simply determined by the signs of x. As a consequence, it is very
efficient to be implemented in practice.

Moreover, given an n-dimensional vector X ∈ Rn and its cor-
responding binary vector B ∈ {+1,−1}n, a scaling factor α is
introduced to deal with the massive loss between X and B. Mathe-
matically, L2 loss function is minimized to obtain an optimal α?, the
process of which can be formulated as follows:

α? = argmin
α

L(α) = argmin
α

||X− αB||2

= argmin
α

XTX− 2αXTB+ α2BTB.
(2)

Thus, the optimal α? can be derived by setting the derivative ofL(α)
with respect to α to be zero:

α? =
XTB

BTB
. (3)

Note that, BTB equals to n, i. e., the size of X. Thus, Eq. (3) can
be reformulated to:

α? =
XT sign(X)

n
=

∑
|Xi|
n

. (4)

Therefore, the optimal α? is the average over the absolute value of
all real-valued elements Xi in X.

3.2. Architecture of BCRNN

The proposed BCRNN is mainly made up of three components,
i. e., BCNN to extract high-level representations from log Mel-
sepctrograms (log-Mels), BRNN to obtain contextual information,
and BFC to produce final emotion predictions.
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3.2.1. Binary Convolutional Neural Network

A standard CNN structure consists of a batch normalization layer, a
convolutional layer with activation function, and a pooling layer. In
this work, we adopt BCNN instead, by conducting binary convolu-
tion in the convolutional layer.

The binary convolution layer consists of a set of filters, similar
as in a typical convolutional layer. In particular, let us denote the
weights in one filter and inputs of the binary convolution layer as
W ∈ Rc×w×h and I ∈ Rc×win×hin , respectively, with win �
w, hin � h. When W is convolved across I, the dot product IsTW
is computed for each sub-tensor of I, namely, Is, which has the same
size of W. In BCNN, Is and W are binarized with H = sign(Is)
and B = sign(W), respectively. After that, two scaling factors
α and β are further introduced, the optimization of which can be
expressed as:

α?, β? = argmin
α,β

||IsTW − αβHTB||, (5)

where α?H and β?B would be the approximate estimations of Is
and W, accordingly. Then we simplify the product of α and β in
Eq. (5) with γ = αβ, and optimize γ according to the knowledge
from Eq. (4) and a hypothesize that I and W are independent:

γ? = α?β? =

∑
|Ii||Wi|
n

≈
∑
|Ii|
n

∑
|Wi|
n

, (6)

where n = c×w× h, with Ii and Wi being elements in Is and W,
respectively.

Considering that there are overlaps between sub-tensors, the
scaling factor α is shared cross channels. As a consequence, we av-
erage the absolute values of the elements of input I across channels
and obtain a matrix A =

∑
|I:,:,i|
c

. Then, the matrix A convolves
with a filter k ∈ Rw×h (where kij = 1

w×h ) to obtain a scaling
factor matrix K. The factor matrix K contains all possible factor
β for all Is. Therefore, the convolution between W and I can be
approximated by the binary convolution operation:

I ∗W = (sign(I) ∗ sign(W)) ∗ βK. (7)

Furthermore, we apply Parametric ReLU activation function so
that the scaling factor for weights β can be estimated automatically
by the activation function. In other words, β can be deemed as a
parameter for the network to figure out itself.

3.2.2. Binary Recurrent Neural Network

After a sequence of high-level representations are extracted by
BCNN, we feed the representations into a bi-directional RNN with
binary-LSTM cell. The structure of binary-LSTM cells is simlar
with traditional LSTM cells, but the weights and inputs of layers are
constrained to binary values, i. e., +1 or −1. Assuming xt is the
input at the timestep t and ht−1 is the hidden state of the previous
timestep t − 1, the mathematical expression of LSTM structure can
be expressed as:

dt = [xt,ht−1]

It,Ft,Ot,Gt = Wdt

{it, ft,ot} = σ({It,Ft,Ot})
gt = tanh(Gt)

ct = ft · ct−1 + it · gt
ht = ot · tanh(ct),

(8)

where it, ft, and ot denote the state the input gate, forget gate, and
output gate, respectively, which helps to protect and control the cell
state ct. Meanwhile, ct is updated based on the old cell state ct−1

as well as the three gates.
In BRNN, we focus on binarizing weights and inputs of layers.

Therefore, Eq. (1) can be applied to generate the binarized W and
dt accordingly, which can further be represented as Wb and dt

b,
respectively. Then, similarly as in the BCNN model, scaling factors
α and β are introduced to approximate the term Wdt in Eq. (8) by
αWbβdt

b. We can use the optimal solutions from Eq. ( 5) to deal
with this approximation.

Additionally, apart from BCNN and BRNN, we further apply a
BFC layer to take the place of a traditional fully connected layer.
Again, both the inputs and weights of the layer are shifted from real
values to binary values, while the related optimal scaling factors can
be estimated as in Eq. (5).

3.3. Propagating Gradients

In backward propagation, the gradients are computed with respect to
the estimated binary weights, to update the parameters. Note that,
during the learning phase, both the real-valued weights and the esti-
mated binary weights are demanded. While the real-valued weights
are used similarly as in the conditional back-propagation process,
the gradient for sign function is problematic as the derivative of it is
zero almost everywhere. Following previous work in [20], we com-
pute it using the straight-through estimator approach [20]. In spe-
cific, given a sign function sign(r), the gradient can be estimated
by ∂sign

∂r
= r1|r|≤1. Then, the estimator gr of the gradient ∂C

∂q
can

be obtained by:
gr = gq1|r|≤1, (9)

where C is the loss function, and the gradient is canceled when r
is too large. For a more in-depth description of the straight-through
estimator approach, the reader is referred to [20].

4. EXPERIMENTS AND RESULTS

To evaluate the feasibility and effectiveness of the proposed BCRNN
framework for SER, we conducted extensive experiments on two
widely used databases in the affective computing community, i. e.,
IEMOCAP and Emo-DB.

4.1. Databases and Acoustic Features

The IEMOCAP database contains approximately 12 hours of record-
ings from five pairs of experienced actors [21]. The recordings were
then segmented into utterances and further annotated into both cate-
gorical and dimensional emotions. In this work, we only considered
the emotion classification task with five categories, i. e., happiness,
anger, sadness, frustration and neutral, since all other categories ap-
pear very sparsely in the dataset. Besides, for our experiments, only
the improvised utterances were considered, resulting in 2 837 sam-
ple in total in order to keep in line with the setting in [10]. The
other database we evaluated is Emo-DB [22], which consists of 535
utterances that collected by ten professional actors, covering seven
emotions (i. e., neutral, fear, joy, angry, sadness, disgust and bore-
dom).

LogMel filterbanks are used as inputs of the proposed model.
Then, the salient representations for each emotion are automatically
learnt from them. To compute log-Mels, speech signals were first
split into frames with Hamming windows of 25ms and a step size of
10ms. Then, log-Mels were computed with 40 filterbanks.
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Table 1. Performance comparison in term of Unweighted Average
Recall (UAR [%]) between the proposed BCRNN with the base-
line system and other state-of-the-art systems on the IEMOCAP and
Emo-DB databases.

Approach IEMOCAP Emo-DB

DNN-ELM [6] 51.2 71.6
3-D ACRNN [10] 64.2 81.5
Full-precision CRNN 62.4 80.1

BCRNN 61.9 79.7

4.2. Experimental setups

For our experiments, both IEMOCAP and Emo-DB were split into
training, development, and test sets with a speaker independent
strategy. In addition, we took an online standardization over the
databases before feeding them into the neural networks, in order to
reduce the influence of speaker variation. To augment the data, we
split all the utterances into sub-segments with a fixed length 3 s. Zero
padding was then applied if the sub-segments are less than 3 s. In
the training phase, each sub-segment was considered independently,
with the same label information with its corresponding utterance.
Nevertheless, in evaluation phase, a max pooling was utilized over
the posterior probabilities of the sub-segment predictions, to come
up with an utterance-level prediction.

As to the network structure, the convolution layer of BCNN has
128 feature maps and the filter size is 5 × 3. Max-pooling is per-
formed with the size 2× 2. Meanwhile, the stacked BRNN contains
128 binary-LSTM cells. As a result, a sequence of 256-dimensional
features are generated per utterance. For the binary fully connected
layer, we set the number of hidden units to be 64, Finally, a softmax
layer is attached for a final emotion state prediction. In the network
training process, we utilized the cross-entropy loss as the objective
function, which was minimized by Adam optimizer with the learning
rate 10−5. The mini-batch size was set to be 40.

To measure the performance of the proposed model, we utilized
the widely used metric Unweighted Average Recall (UAR), i. e., the
sum of classwise recall divided by the number of classes, for emotion
recognition.

4.3. Results and Discussions

To evaluate the performance of the proposed BCRNN, we selected
the following three state-of-the-art models for performance compar-
ison. i) DNN-ELM [6]. This model uses DNN to extract represen-
tation and EML for emotion classification. ii) 3-D ACRNN [10].
In this model, 3-D log-Mels and attention mechanism are used. iii)
Full-precision CRNN [10]. This is our baseline model, with tra-
ditional full-precised weights and inputs. For all these controlled
experiments, we retained the default network structures and training
hyper-parameters in the previous work [6, 10].

Table 1 shows the obtained recognition results in terms of
UAR for different SER models on both IEMOCAP and Emo-DB
databases; whereas Table 2 compares the size of each investigated
models. From Table 1, we can observe that the model 3-D ACRNN
performs the best among the baseline systems and other state-of-the-
art systems. This mainly attributes to i) the end-to-end framework
design, which aims to directly learn salient representation from Mel-
spectrogram; ii) its attention mechanism can filter some redundant
representations; iii) the model complexity. As can be seen from
Table 2, the 3-D ACRNN is characterized with the largest model

Table 2. Model size comparison between the proposed Binary Con-
volutional Recurrent Neural Network (BCRNN) with its original
full-precised system and other state-of-the-art systems.

Approaches Model size (MB)

DNN-ELM [6] 12.33
3-D ACRNN [10] 323.46
Full-precision CRNN 105.48

BCRNN 4.34

size of 323.46 MB, which is almost three times of the full-precision
CRNN model and 26 times of the DNN-ELM model. For our se-
lected baseline (i. e., full-precision CRNN), one can observe that it
is slightly inferior to the 3-D ACRNN but with approximate 1/3 the
model size of 3-D ACRNN.

When we compared the proposed BCRNN with the baseline
model, one can observe that it performs very competitive to the base-
line model on both IEMOCAP (i. e., 61.9 % vs. 62.4 %) and Emo-
DB (i. e., 79.7 % vs. 80.1 %) databases. However, it considerably
compresses the original full-precision CRNN, from 105.48 MB to
4.34 MB, leading to an approximate model compression rate of 26.
When we further compared BCRNN with other two models, it can
be seen that it outperforms the DNN-ELM model with a large perfor-
mance gain (i. e., 10.7 % and 8.1 % for IEMOCAP and Emo-DB cor-
pora, respectively), even though the model is also small. It can also
be seen that it performs a slightly worse than 3-D ACRNN model,
but with a remarkable model size compression.

Besides, for the binary convolution, our model needs to exe-
cute the number of cNfNi binary operations and Ni add opera-
tion. Note that common CPU is able to process 64 binary opera-
tions per CPU clock time. Therefore, our model is much faster than
full-precise models. Mathematically, the speedup is calculated by
S =

cNfNi
1
64
cNfNi+Ni

= 64

1+ 64
cNf

. It means the speedup rate is relating

to the number of channels and the size of filters. In our setting (i. e.,
the channel: 128; filter size: 5× 3), we obtained a speedup rate with
61.9 %.

Overall, all these results promote the possibility to apply most
recently developed deep learning models to the devices with limited
storage and computational resource for SER.

5. CONCLUSION

To facilitate the application of Speech Emotion Recognition (SER)
to embedded devices, in this paper we proposed a Binary Convolu-
tional Recurrent Neural Network (BCRNN). In the proposed model,
the weights and inputs of the layers are constraint to binary values
that are +1 or −1. Firstly, log-Mels are extracted from the raw
speech signals. Then, BCRNN takes log-Mels as inputs to gener-
ate higher-level discriminative representations for emotion classifi-
cation. IEMOCAP and Emo-DB corpora are used to evaluate the
performance of the model in term of unweighted average recall. Re-
sults indicate that our proposed model can yield comparable results
compared with state-of-the-art methods but with a high model size
compression rate. The complex convolution operations are largely
accelerated by simple binary operations. Therefore, it increases the
possibility to integrate SER systems on embedded devices where
computational resources are limited.

Encouraged by the obtained results, our future work will focus
on advanced approaches that can lead to better accuracy and higher
compression rate for SER.
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[13] Martin Wöllmer, Florian Eyben, Stephan Reiter, Björn
Schuller, Cate Cox, Ellen Douglas-Cowie, and Roddy Cowie,
“Abandoning emotion classes – Towards continuous emotion
recognition with modelling of long-range dependencies,” in
Proc. INTERSPEECH, Brisbane, Australia, 2008, pp. 597–
600.

[14] Zixing Zhang, Eduardo Coutinho, Jun Deng, and Björn
Schuller, “Distributing Recognition in Computational Paralin-
guistics,” IEEE Transactions on Affective Computing, vol. 5,
no. 4, pp. 406–417, Oct. 2014.

[15] Song Han, Huizi Mao, and William J Dally, “Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[16] Matthieu Courbariaux, Yoshua Bengio, and Jean Pierre David,
“Binaryconnect: training deep neural networks with binary
weights during propagations,” in Proc. International Confer-
ence on Neural Information Processing Systems (NIPS), Mon-
treal, Canada, 2015, pp. 3123–3131.

[17] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and
Ali Farhadi, “Xnor-net: Imagenet classification using binary
convolutional neural networks,” in Proc. European Confer-
ence on Computer Vision (ECCV), Amsterdam, Netherlands.
Springer, 2016, pp. 525–542.

[18] Wenlin Chen, Stephen Tyree, Stephen Tyree, Kilian Q. Wein-
berger, and Yixin Chen, “Compressing neural networks with
the hashing trick,” in Proc. International Conference on In-
ternational Conference on Machine Learning (ICML), Lille,
France, 2015, pp. 2285–2294.

[19] Xu Xiang, Yanmin Qian, and Kai Yu, “Binary deep neural
networks for speech recognition,” in Proc. INTERSPEECH,
Stockholm, Sweden, 2017, pp. 533–537.

[20] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio, “Binarized neural networks: Train-
ing deep neural networks with weights and activations con-
strained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

[21] Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe
Kazemzadeh, Emily Mower, Samuel Kim, Jeannette N
Chang, Sungbok Lee, and Shrikanth S Narayanan, “IEMO-
CAP: Interactive emotional dyadic motion capture database,”
Journal of Language Resources and Evaluation, vol. 42, no. 4,
pp. 335–359, Dec. 2008.

[22] Felix Burkhardt, Astrid Paeschke, Miriam Rolfes, Walter F
Sendlmeier, and Benjamin Weiss, “A database of German
emotional speech,” in Proc. INTERSPEECH, Lisbon, Portu-
gal, 2005, pp. 1517–1520.

6694


		2019-03-18T11:18:52-0500
	Preflight Ticket Signature




