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ABSTRACT

This is a report of our lessons learned building acoustic models from 1
Million hours of unlabeled speech, while labeled speech is restricted
to 7,000 hours. We employ student/teacher training on unlabeled
data, helping scale out target generation in comparison to confidence
model based methods, which require a decoder and a confidence
model. To optimize storage and to parallelize target generation, we
store high valued logits from the teacher model. Introducing the no-
tion of scheduled learning, we interleave learning on unlabeled and
labeled data. To scale distributed training across a large number of
GPUs, we use BMUF with 64 GPUs, while performing sequence
training only on labeled data with gradient threshold compression
SGD using 16 GPUs. Our experiments show that extremely large
amounts of data are indeed useful; with little hyper-parameter tuning,
we obtain relative WER improvements in the 10 to 20% range, with
higher gains in noisier conditions.

Index Terms: Speech recognition, acoustic models, large scale semi-
supervised learning.

1. INTRODUCTION

A well-known maxim in the speech community is there is no data
like more data [1]. Increasing the size of the training data by an order
of magnitude have consistently led to substantial improvements in
accuracy ([2], [3]). In this paper we push the envelope in building
acoustic models (AM) on extremely large amounts of data. Specifi-
cally, we report our lessons in building acoustic models on 1 Million
hours of unlabeled speech, while using only 7,000 hours of labeled
speech data.

Taking a historic perspective; in the 1920’s Radio Rex' used
thresholds on formant energies to recognize the word “Rex”. Since
then, automatic speech recognition (ASR) systems have become ever
more complex and used increasing amounts of speech data. Over
the decades, corpora have grown from a few tens of hours of speech
(TIDIGITS [5], TIMIT [6], WSJ [7]), to a few hundred hours (Switch-
board [8]), to a few thousand hours of speech (Fisher corpus [9]). In
symbiosis with this growth of data and more powerful computing
hardware, a similar evolution in model complexity and algorithms
can be traced, from the hard-wired analog signal processing of Radio
Rex, via template based pattern matching and dynamic time-warping
[10], to hidden Markov models [11], and the current prevalent deep
neural networks [12].

Recently, with deep learning models, training data sizes on the
order of ten thousand hours of speech are not unusual ([13], [14]).
Building an AM from a hundred thousand hours is still rare, but [15]
showed that increasing from several thousand hours of training data
to a hundred thousand hours of lightly supervised data can yield

! Arguably the first speech recognition system [4].
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substantial accuracy improvements. As a note, the large dataset used
in our work is fully unlabeled.

Semi-supervised learning (SSL) has a long history in ASR ([16],
[17], [18]). Self-training is the most commonly used approach where
typically there is a smaller labeled dataset, and a much larger unla-
beled dataset. The labeled data is used to train a seed model from a
powerful model family, which is used to decode the unlabeled data at
the second stage (often large beam sizes are used). The most reliable
hypotheses are selected based on confidence measures [19] and the
speech data with the selected hypotheses are used for re-training the
AM.

Self-training requires good confidence measures, which has been
a challenge for SSL ([19], [20]). Several methods to estimate word
and frame level token confidence from speech lattices or hypotheses
have been developed ([21], [22]). With models that have high memo-
rization capability such as LSTM AMs, label quality becomes even
more important [23]. Another challenge for the scale of data we con-
sider in this paper, is an efficient inference mechanism to not only
generate lattices/hypotheses, but also to estimate token confidence
and use it for hypothesis selection. A further challenge is applying
sequence discriminative training, where label errors have a larger
detrimental effect ([24], [25]).

‘We built an SSL infrastructure that can train models on 1 Million
hours of audio with a quick turnaround time. This paper reports our
lessons in terms of the design choices made while building models
at this scale. We based our training on the student/teacher paradigm.
Recently, student/teacher training has become popular in the speech
community for model compression ([26], [27], [28]). Here, instead
student/teacher training is applied to produce soft targets for unla-
beled data, which leads to efficient target generation ([29], [30]).
Further, we introduce a particular learning schedule — interleaving
training on labeled data with training on unlabeled data. Sequence
training is also used, but only using labeled data. Finally, in our large-
scale experiments we contrast two types of distributed training.

The remainder of the paper is organized as follows: starting with
a description of the baseline fully supervised AM system in Section 2,
we discuss the semi-supervision design choices in Section 3. Next,
we cover the experimental setup in Section 4, and validation results
exploring the design choices in Section 5. The final 1 Million hour
results with analyses are described in Section 6, followed by our
conclusions in Section 7.

2. BASELINE SUPERVISED ACOUSTIC MODEL

We use an HMM-LSTM hybrid. The HMM models low-frame rate
single state triphone units [31]. States are clustered down to 3,183
senones using phonetic decision trees. The acoustic features consist
of 64-dimensional log mel-warped energies computed on audio sig-
nals every 10 ms with a 25 ms analysis window ([32], [33]). These
are stacked three at a time and sub-sampled to a 30 ms advance. A
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causal mean estimate is computed and subtracted, and finally global
mean and variance normalization is applied. To compensate for sub-
sampling, features are created at three different offsets for each utter-
ance.

The LSTM model is a stack of five layers, each consisting of
768 units resulting in about 24 M parameters. The model has a three-
frame look-ahead. The training data is 7,000 hours of labeled US
English data drawn from the Echo family of devices. The models are
trained first with the cross-entropy criterion (CE), using alignments
computed on the labeled data. First, we follow an exponential learn-
ing rate decay for ten epochs, with chunked BPTT for greater paral-
lelization efficiency [34]. In this technique, utterances are split into
smaller sub-sequence chunks (here, 32 frames) and the sub-sequences
are randomized. For each epoch we cycle through a different feature
offset. Then the models are fine-tuned using full sequence CE BPTT
for two more epochs. Finally, three epochs of the sequence discrimi-
native criterion state-level minimum Bayes risk (sMBR) is applied.

‘We employ distributed training using synchronous SGD on two
p3.16xlarge instances (16 Tesla V100 GPU cards). Gradient Thresh-
old Compression [35] is used for efficient peer-to-peer weight updates
after every minibatch.

3. LARGE-SCALE SEMI-SUPERVISED LEARNING

At the scale of 1 Million hours, certain design choices were crucial for
experiment turnaround time, while also obtaining significant accuracy
improvements. This section presents various design choices and their
considerations.

3.1. Data Selection and Feature Extraction

We drew data according to a device distribution roughly similar to
that of the labeled data. Within each device, we drew samples ran-
domly from the production data firechose. We did not filter data with
confidence models nor for background speech/noise. Our hypothe-
sis was that well-calibrated posteriors from the teacher model would
mitigate poorly selected data.

To speed up parallel feature generation we did not require a pre-
roll of utterances for initialization as described in [36]. We developed
a feature pipeline that uses an efficient hashing mechanism to cluster
speakers and sort utterances belonging to a speaker for performing
running cepstral mean normalization. This could then be parallelized
over several thousand CPU cores.

3.2. Student-Teacher Learning

A key design choice was to employ the student/teacher learning
paradigm, thus taking the ASR decoder out of the SSL recipe. In
essence, for each feature vector, the teacher network outputs a proba-
bility distribution over senones. The student network also estimates
the probabilities over the senones given the same feature vector, and
the learning objective optimizes the CE loss between these two distri-
butions. The student models are identical to the LSTMs described in
the previous section, but the teacher models have five bi-directional
LSTM layers, each of size 768 units (amounting to a total of 78 M
model parameters). The training of the teacher on the labeled data
follows the same recipe as the regular LSTMs, discussed in Section 2.

3.2.1. Confidence Modeling

There is evidence that even unfiltered data can lead to significant
SSL improvements ([17], [37]). Further, as neural networks have
improved, the estimated probabilities become better calibrated [38].
Our hypothesis was that the teacher’s posteriors are calibrated well
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enough to act as the confidence measure for the student training. How-
ever, in a traditional self-learning system, the language model is also
providing additional information during the decoding, which is not
present in our system. We hypothesize that this is partially mitigated
by the bi-directional LSTM model, which has more context than the
student.

3.2.2. Target Generation

The senone output distribution is large, and generating targets from
the teacher model on-the-fly can slow down training. To reduce band-
width and storage requirements as we parallelize across multiple
GPUs, we store only the k highest valued logits. During the student
model training, full posteriors are reconstructed by filling the missing
logits with large negative values. While this reconstruction is lossy,
we found empirically that the probability mass is dominated by the
top few posteriors. We found storing the top-20 values for k to be suf-
ficient from the standpoint of not having a WER degradation, while
yielding a huge gain in storage.

3.3. Scheduled Learning

‘While we primarily train on unlabeled data, the limited labeled data
is also used. Learning on unlabeled and labeled data is interleaved,
with slightly higher learning rates on the labeled data.

We used two unlabeled training datasets (100khrs and 1Mhrs),
as will be discussed in Section 4. Given the large amounts of data,
our design was to perform just one learning pass through the data.
We divided the data into a number of sub-epochs, with a sub-epoch
defined as 25,000 and 55,000 hours for the 100khr and 1Mhr datasets
respectively. We decayed the learning rate as we passed through the
sub-epochs, following an exponential learning rate decay.

For the 100khrs, after each sub-epoch through the unlabeled data,
we perform CE training on the labeled data, with a rotation through
the feature offsets (refer to Section 2). For the 1Mhr data, after every
five sub-epochs through the unlabeled data, we perform CE training
on the labeled data, rotating through the feature offsets.

As discussed in Section 2 we employ sequence chunked BPTT
for training speed. On the 100khrs set, chunked training is used for the
first three sub-epochs (including the corresponding passes through
the labeled data), followed by a full sequence BPTT on the last sub-
epoch on the unlabeled data. On the 1Mhrs data, we apply chunked
training for the first 15 sub-epochs, and then do fine-tuning during
the last three sub-epochs.

3.4. Sequence Training for SSL

Sequence discriminative training often yields large accuracy gains
(commonly, around 10% relative). However, it is also a difficult prob-
lem for SSL ([39], [24]), since it is particularly sensitive to noisy
references during training. We chose to perform sequence training
only on labeled data. There was evidence [40] that the accuracy gains
may be relatively small in such a setup. However, our hypothesis was
that this result was due to a smaller labeled dataset, and using our full
7,000 hour labeled data would still recover large gains from sequence
training.

3.5. Distributed Training

For the scale of data we want to learn from, our design goal was to
parallelize beyond a few tens of GPUs. We explored the Gradient
Threshold Compression method (GTC) [35] and Blockwise Model-
Update Filtering (BMUF) [41].



With high-end GPUs like Tesla V100s, gradient compression
based training scales well up to 16 GPU cards, but efficiency tapers
off at higher scale. In this work, we used two p3.16xlarge instances
(16 Tesla V100 GPU cards spread over two hosts).

The BMUF training scales nearly linearly with GPUs, at least in
terms of throughput, because the per-worker model updates happen
much more infrequently. However, it can come at a cost in accuracy.
The Nesterov-like momentum updates at block level recover some
of these losses [42], but we still see some degradation (Table 2). For
our experiments with BMUF we used eight p3.16xlarge instances (64
Tesla V100 GPUs).

4. EXPERIMENTAL SETUP

We discussed a number of system level details in Section 2. In this
section we give the details with regard to our experimental setup.

4.1. Training Datasets

For our experiments we used three far-field training datasets drawn
from production data of the Alexa family of devices from the US
English locale: (a) a 7,000 hour fully labeled dataset (b) 100,000
hours of unlabeled data for prototyping and validating design choices,
and (c) a 1 Million hour unlabeled dataset for the final model build.

4.2. Test Datasets

We used several test sets in this work: (a) a validation test set (referred
to as VAL), which consisted of about 30 hours of data, (b) acousti-
cally difficult audio data collected in a real room with about 5,000
utterances roughly equally spread among five device placements. The
first device placement (DP1) in the center of the room was the eas-
iest, while other conditions (DP2 to DP5) were more challenging,
and (c) a 30 hours independent test set (referred to as TEST). The
TEST set was also divided into native (TST-NATIVE) and non-native
(TST-NON-NAT) speakers as judged by the annotators.

4.3. Decoding Setup and Scoring

All decoding on the VAL test set use a 4-gram statistical language
model (LM). The acoustic model scale factor was tuned on this test
set. For the decoding runs on all other test sets, the statistical LM was
combined with a set of domain-specific grammars. We report results
as relative Word Error Rate Reduction (WERR) compared the strong
baseline supervised learning system.

5. EXPERIMENTS ON 100,000 HOURS

In this section, we validate the key design choices by training models
on the 100,000 hour unlabeled data and decoding on the VAL test set.
The key elements are: (a) scheduled learning and its interaction with
sMBR trained teacher, (b) sequence training of the student model,
and (c) choice of distributed training method.

5.1. Scheduled Learning

We perform our analysis with and without scheduled learning; we
also consider its interaction with and without sMBR trained teacher.
Table 1 presents accuracy for the four different options relative to a
baseline LSTM AM that is trained with the CE criterion on the fully
labeled 7,000 training data.

It can be seen from the table that scheduled learning, i.e., inter-
leaving labeled data in the learning, helps the student models both in
the case of CE trained as well as sequence trained teachers. However,
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Table 1: On VAL test set, relative WER (%) reduction for SSL student
models trained on 100,000 hour dataset: with and without scheduled
learning (SL); with and without sMBR trained teachers. The WER
reduction is computed against a baseline LSTM AM that is trained
with CE criterion on the fully labeled 7,000 hour training data.

without sSMBR teacher | with SMBR teacher
without SL 1.0 8.8
with SL 6.8 10.8

the gain with scheduled learning is more with students trained with
the CE-teacher.

5.2. Scaling Number of GPUs to 64

Student models used in Table 1 were trained using the GTC trainer
with 16 GPUs. Using the best model configuration from Table 1,
i.e., with scheduled learning and with sMBR trained teachers, we
now investigate the effect of BMUF trainer on student models. For
student training with BMUF trainer, we use 64 GPUs. Note that the
objective here is not to compare the BMUF and the GTC trainers
(which would involve an extensive search over hyper-parameters of
both trainers), but to obtain an estimate of the WER gain or loss in
scaling up the number of GPUs in training (for which we use BMUF).
With 64 GPUs, we obtain a relative WER reduction of 7.8% over the
baseline LSTM AM that is trained with the CE criterion on the fully
labeled 7,000 training data (compared to 10.8% in Table 1). Thus,
in attempting to scale to 64 GPUs, we lose some of the gains due to
SSL.

Table 2: On VAL test set, relative WER (%) reduction for sequence
training of SSL students. The WER reduction is computed against a
baseline LSTM AM that is trained with CE criterion on the fully la-
beled 7,000 hour training data. sMBR is performed with GTC trainer.

System CE Trainer | WERR (%)
Baseline labeled CE GTC 0
Baseline labeled CE + sMBR GTC 10.7
SSL + SL + sMBR GTC 18.6
SSL + SL + sMBR BMUF 15.6

5.3. Sequence Training

Recall that our strategy is to perform sequence training of student
models only on the 7,000 hour labeled dataset. We compare if the
gains we obtained at the CE stage also carry over to the SMBR stage.
Since the labeled dataset is much smaller, we use the GTC trainer
with 16 GPUs for all models. From Table 2, compared to a fully
supervised CE trained AM, sMBR training yields a 10.7% relative
improvement in WER. In comparison to this sMBR model, we now
compare two SSL student models on which sMBR training is per-
formed, i.e., GTC and BMUF trained SSL student models. Sequence
training only on labeled data still gives a good gain for SSL students
(WER reductions of 18.6% and 15.6%, respectively over baseline
labeled CE model), translating still into relative WER reductions of
8.2% and 5.4%, respectively over the fully supervised sMBR model.
It is interesting to note that the effect of training with BMUF using
64 GPUs still does not fully recover after sSMBR training with the
GTC trainer using 16 GPUs, but we select this option for speed.



6. RESULTS ON 1 MILLION HOURS

In this section we present our final 1 Million hour model. We com-
pare this model against the fully supervised sMBR model on (a) the
acoustically difficult test sets with five device positions DP1 to DP5,
and (b) TEST test set, along with sub-dividing it in two dimensions:
nativity (TST-NATIVE, TST-NON-NAT) and SNR levels. We present
these results in Tables 3, 4.

6.1. Training Convergence

For the final 1 Million hour semi-supervised training we are using
BMUF with 64 GPUs, using sSMBR trained teacher, and employing
scheduled learning. Figure 1 plots convergence as WER reduction on
the VAL set, relative to an LSTM AM that is trained with CE criterion
on the fully labeled 7,000 hour training data with GTC trainer. The
x-axis represents sub-epochs (each sub-epoch is about 55,000 hours
of data), adding up all the way up to 1 Million hours. It can be seen
that the student model keeps improving up to the 14™ sub-epoch (i.e.
up to 770,000 hours of data). Sub-epochs 16 to 18 are fine-tuning
epochs, and the gains are larger. Note that the decrease in WER is not
monotonic (sometimes there is even a slight increase), and we have
not extensively tuned the learning hyper-parameters. From Figure 1,
the WER reduction after training on the full 1 Million hours, at the CE
stage, is 13.7% — significantly better than the corresponding 100,000
hour result (10.8%) in Table 1.
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Fig. 1: On VAL test set, relative WER reduction per sub-epoch of the
1 Million hour SSL model against a baseline LSTM AM that is trained
with CE criterion on the fully labeled 7,000 hour training data. Each
sub-epoch corresponds to about 55,000 hours of data.

6.2. Final Results

The final results including the final sSMBR training can be seen in
Table 3 and Table 4. Except for the easiest device position (DP1), and
the easiest noise condition (SNR>25dB), relative WER reductions
are all greater than 10%, and consistently the improvement is greater
for harder conditions. Note also that the improvement is greater for
non-native speakers. We take this as validation that large scale SSL
can not only significantly improve accuracy overall (11.6% error re-
duction), but also yield an out-sized improvement for the most chal-
lenging conditions.
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Table 3: On the acoustically difficult test set (in DP1 to DPS), rela-
tive WER reduction (%) of the final 1 Million hour model against a
baseline LSTM AM that is sMBR trained on the fully labeled 7,000
hour training data.

Test Conditions | WERR (%)
DP1 9.8
DP2 22.2
DP3 21.8
DP4 16.5
DP5 18.9

Table 4: On TEST test set, relative WER reduction (%) of the final
1 Million hour model against a baseline LSTM AM that is sMBR
trained on the fully labeled 7,000 hour training data.

Test Conditions WERR (%)
TEST 11.6
TST-NATIVE 11.6
TST-NON-NAT 13.0
TEST, SNR: <5 dB 13.3
TEST, SNR: 5-10 dB 14.5
TEST, SNR: 10-15 dB 10.7
TEST, SNR: 15-20 dB 11.2
TEST, SNR: 20-25 dB 12.9
TEST, SNR: >25 dB 6.7

7. CONCLUSIONS

This paper reported on our lessons learned in building acoustic mod-
els on 1 Million hours of unlabeled speech data, in conjunction with
7,000 hours of labeled data. Using student-teacher learning, we sim-
plified target generation without the need for decoding and confi-
dence modeling. To optimize storage and to parallelize the target
generation, we stored high valued logits from the teacher model. We
introduced the notion of scheduled learning, interleaving learning on
unlabeled and labeled data. This approach gave gains with CE and
sMBR trained teacher models, but yielded bigger WER gains for CE
trained teacher models. To scale distributed training to 64 GPUs we
used BMUF, while performing sequence training only on the labeled
data using GTC training with 16 GPUs. Our experiments showed that
extremely large amounts of data are indeed useful; with little hyper-
parameter tuning, we obtained relative WER improvements in the 10
to 20% range, with much higher gains in more difficult conditions,
acoustically or in terms of speakers.
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