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ABSTRACT

This paper investigates the joint optimization of single
channel speech enhancement and the acoustic model of a
hybrid DNN-HMM system for noise robust ASR. Two en-
hancement methods are investigated. A masking of the noisy
speech signal with a speech mask estimated by a DNN based
mask estimator, as well as a parametric Wiener filter employ-
ing a DNN based noise estimator and a DNN based frame
wise estimation of the filter parameters. Those components
are jointly optimized with the acoustic model of the ASR sys-
tem. It is shown that the Wiener filter approach can be used to
improve the performance of a state-of-the-art single-channel
ASR system on the single channel track of the CHiME-4
data, where the WER of the real ealuation set is reduced from
11.6 % to 10.5 %.

Index Terms— robust ASR, single-channel ASR, joint
training, speech enhancement, CHiME-4

1. INTRODUCTION

Significant improvements in the performance of automatic
speech recognition (ASR) have been achieved over the last
decade. The performance gains are driven especially by the
application of deep learning techniques [1]. Nevertheless per-
formance in noisy scenarios is still significantly worse than
the performance on undisturbed speech [2, 3]. To mitigate
this effect, multiple microphones and multi-channel speech
enhancement techniques like filter-and-sum beamforming are
often used to improve the signal quality and in turn ASR per-
formance as seen e.g. in the submissions to the 4th CHiME
challenge [4, 5, 6, 7].

More recently, approaches that jointly optimize multi-
channel speech enhancement algorithms and the acoustic
model to improve ASR performance have been proposed.
To this end statistically optimal beamformers, which are
supported by data driven parameterizable mask estimators
are jointly trained to minimize the acoustic model training
criterion [8, 9, 10]. That work was mainly focused on multi-
channel approaches.

Single channel speech enhancement techniques have
proven to be less effective and often improvements in speech
quality metrics like perceptual evaluation of speech quality
(PESQ) do not translate into better ASR performance [5].
Thus the ASR performance is still significantly worse when
only a single microphone is available [4, 5, 6].

In related work as e.g. [11] word error rate (WER) im-
provements on simulated noisy data are reported by utiliz-
ing deep neural networks (DNNs) as regression models to en-
hance noisy speech and training them jointly with the acous-
tic model of an hybrid ASR system. In [5] a DNN is used
to estimate speech masks, which are directly applied to the
noisy signal for enhancement. No improvements could be re-
ported with this method on the real CHiME-4 data, but no
joint training of the speech enhancement and acoustic model
has been done in [5]. In this work we investigate the joint op-
timization of single channel speech enhancement and acoustic
modeling, while focusing on the approach of utilizing DNNs
as mask estimating networks. Additionally to using the direct
masking approach used in [5], we investigate the utilization
of a parametric Wiener filter. The Wiener filter has been in-
vestigated as a preprocessing approach for ASR before with
mixed results [12, 13, 14]. Here we focus on it’s integra-
tion with the hybrid acoustic model and utilization of a DNN
based mask estimate for the noise estimation within the filter-
ing. This turns out to be the key to WER improvements in our
experiments. The rest of the paper is organized as follows.
An overview over the investigated mask based single chan-
nel speech enhancement methods is given in Section 2. The
experimental setup including the ASR system is discussed in
Section 3 and the results are presented and discussed in Sec-
tion 4.

2. SPEECH ENHANCEMENT

This work investigates an integration of speech enhancement
and acoustic model. The short-time Fourier transform (STFT)
domain input Yt,f is obtained from a noisy recording contain-
ing a speech component St,f and a noise component Nt,f

Yt,f = St,f +Nt,f (1)

where t is the time frame index out of T total frames and f
is the frequency bin index out of F total frequency bins. The
speech enhancement module estimates the clean signal

Ŝt,f = fΘf
(Y, t, f) (2)

where Θf are trainable parameters of the speech enhance-
ment. Acoustic features xt = g(Ŝ, t) are extracted from
the enhanced signal and used as input features for the DNN
hybrid acoustic model returning the posterior likelihoods
pAM

ΘAM
(st|xT1 ) for state s at time t given the feature vector
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sequence xT1 . Where ΘAM are the trainable parameters of the
acoustic model. Through the integration of speech enhance-
ment and acoustic model into a single model, Θf and ΘAM

can be jointly optimized towards an ASR loss function.
The individual building blocks of the system are described

in the following.

2.1. Estimation of speech and noise masks

This work employs a mask estimating neural network similar
to the ones described in [15, 10], where the output at time
frame t of the network is

[λ
(S)
t,1 , . . . λ

(S)
t,F , λ

(N)
t,1 , . . . , λ

(N)
t,F ] = h

(λ)
Θλ

(Y, t) (3)

Where Θλ are the trainable parameters of the mask estimator
network. The output values λ(ν)

t,f are restricted to the value

range (0, 1) by using a sigmoid output layer. The output λ(ν)
t,f

for ν ∈ {S,N} is interpreted as the likelihood of speech or
noise being present at time-frequency bin (t, f), respectively.

2.2. Direct masking

The approach of directly applying a speech mask λ(S)
t,f to the

noisy signal Yt,f to enhance the speech, which has been inves-
tigated as a separate preprocessing in [5] is jointly optimized
with the acoustic model in this work. The enhanced signal is
computed as

Ŝt,f = f
(DM)
ΘDM

(Y, t, f) = λ
(S)
t,f · Yt,f (4)

The trainable parameters of the direct masking (DM) are thus
the parameters of the mask estimator ΘDM = {Θλ}

2.3. Parametric Wiener filter

Direct masking of a speech signal often introduces a strong
degree of distortion to the enhanced speech signal. To miti-
gate this effect, the parametric Wiener filter (PW) as described
in [16, 17] offers more flexibility in controlling the trade off
between speech distortion and noise suppression. The output
of the Wiener filter is computed as

Ŝt,f = fPW
ΘPW

(Y, t, f) =

∣∣∣∣∣ |Yt,f |p − l · |N̂t,f |p|Yt,f |p

∣∣∣∣∣
1
q

· Yt,f (5)

where N̂t,f is an estimate of the noise power spectrum and
l, p, q are the parameters that control the parametric Wiener
filter and will be referred to as Wiener parameters in the fol-
lowing. Usually those parameters are set manually to control
the trade off between noise suppression and speech distortion.
In this work a neural network is used to obtain frame wise es-
timates of those parameters.

[lt, pt, qt] = h
(PE)
ΘPE

(Y, t) (6)

where ΘPE are the trainable parameters of the Wiener param-
eter estimation network.

Furthermore a noise estimate

N̂t,f = h
(NE)
ΘNE

(Y, t, f) (7)

is required for the Wiener filter, where ΘNE are potential
trainable parameters of the noise estimator. Thus ΘPW =
{ΘNE,ΘPE} are the trainable parameters of the Wiener filter
used here.

Two different noise estimators are investigated in this
work. The first one is a frame average of the first P frames

N̂t,f = h(NE,1)(Y, f) =
1

P
·
P∑
t′=1

Yt′,f (8)

obtaining a static noise estimate for the whole signal. The
second noise estimator is based on a noise mask estimate λ(N)

t,f

and the noise estimate is obtained by masking the input signal

N̂t,f = h
(NE,2)
ΘNE,2

(Y, t, f) = λ
(N)
t,f · Yt,f (9)

The noise mask λ(N)
t,f is obtained as described in 2.1.

3. EXPERIMENTAL SETUP

The proposed joint training of the single channel speech en-
hancement and the acoustic model is evaluated on the sin-
gle channel track of the CHiME-4 speech-recognition task
[7]. The CHiME-4 dataset contains simulated and real 16 kHz
data which was recorded, with a hand held device, in four dif-
ferent noise environments. This work is focused on the real
data.

80 dimensional log-mel filterbank features are used as in-
put features for the acoustic model, where the STFT is using
a hanning window applied to a 25 ms frame with a frame shift
of 10 ms.

The input features are unnormalized but a 80 dimensional
linear input layer employing batch normalization [18] is used
as a first layer of the acoustic model. The linear layer is fol-
lowed by 5 bidirectional long short-term memory (BLSTM)
layers with 600 units each. The output is a softmax layer with
1501 units. The acoustic model is pretrained with the cross
entropy (CE) loss function in the same manner described in
[4] using the unprocessed data as input signals.

The mask estimation network, described in Section 2.1,
consists of a BLSTM layer with 256 units followed by two
fully connected layers with 512 units and ReLU activation
function. The mask estimation output layer is a fully con-
nected layer with sigmoid activation function. The input of
the mask estimation network is the magnitude spectrum of
the noisy input signal using the same configuration for the
STFT as for the feature extraction. The mask estimation net-
work is initialized by a separate pretraining similar to the one
described in [15], where the simulated training data is used to
compute ideal binary masks as training targets.

The parameter estimation network, described in Section
2.3, consists of a single BLSTM layer with 1024 units fol-
lowed by a fully connected layer with sigmoid activation
function and 3 output units. Thus the parameters l, p and q
are restricted to a value range of (0, 1). In preliminary exper-
iments we investigated variations of the activation function
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of the output layer, as e.g. 2 · sigmoid, 10 · sigmoid and the
identity function, since a restriction of the parameters to the
value range of (0, 1) is not generally required. The results
indicated that reasonable results could be obtained with other
activation functions as well, but the simple sigmoid output
function offered a good trade off between performance and
stability of training convergence towards smaller changes
in hyper parameters. The parameter estimation network is
always trained from scratch during the joint training.

The joint training is done for 2 epochs with the CE
loss function on the complete training set of the CHiME-
4 data. For every combination of speech enhancement with
the acoustic model, the hyperparameters of the joint train-
ing like learning rate, gradient noise and dropout are tuned
separately on the development set. It is noteworthy, that the
direct masking approach was tuned with the same effort as
the Wiener filter approach.

Decoding is done with a 5-gram language model. In a post
processing step a recurrent neural network (RNN) language
model lattice rescoring is done. The RNN language model
is a 3 layer long short-term memory (LSTM) and is further
described in [4].

4. EXPERIMENTAL RESULTS & DISCUSSION

Table 1 shows the WER for the different combinations of
single channel speech enhancement with the acoustic model.
The authors of [5] found that ASR performance declined,
when using the direct masking approach even when the pro-
cessed data was seen during training by the acoustic model.
Consistent with their findings, we also could not obtain
performance gains with the direct masking approach, even
when jointly optimizing the mask estimation network and
the acoustic model. The parametric Wiener filter approach
on the other hand shows significant performance gains after
joint optimization, especially when used with the mask based
noise estimation.

Table 1. Average WER (%) for various speech enhancement
methods after joint optimization.

System Dev Eval
Front-

end
Noise

estimator

- 6.6 11.6
DM 7.0 13.4

PW frame avg. 6.2 11.3
masking 6.0 10.6

Figure 1 shows the frame wise estimated parameters of
the Wiener filter for an example signal. The plots show, that
the variation of the parameter values over the signal duration
is relatively small especially when using the frame average as
a noise estimate.

Figure 2 shows the distribution of the frame wise param-
eters values over the development set. The histograms show,
that the parameter values are distributed in a relatively narrow
value range, but the specific parameter value ranges differ for
the different noise estimators. The WERs in Table 2 confirm,
that the frame wise estimation of the parameters is not es-
sential for the performance gain and that using fixed values
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Fig. 1. Example of frame wise parameter estimation of l, p
and q of Equation 5 for the signal F04 053C0108 STR for (a)
using the first-T frames noise estimator (b) using the mask
based noise estimator
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Fig. 2. Histogram of the parameter values of l, p and q from
Equation 5 computed on the development set after joint train-
ing. (a) using the first-T frames noise estimator (b) using the
mask based noise estimator

provided from the jointly optimized model as average over
the development set works equally well.

Table 2. Average WER (%) for the parametric Wiener ap-
proach after joint optimization. The Wiener parameters are
either estimated separately for each frame (frame wise), aver-
aged over the complete signal (seq. avg.) or fixed for all sig-
nals to the average computed over the development set (dev
avg.).

System Dev Eval
Front-

end
Noise

estimator
Wiener
param.

- 6.6 11.6

PW

frame avg.
frame wise 6.2 11.3
seq. avg. 6.2 11.4
dev avg. 6.2 11.4

masking
frame wise 6.0 10.6
seq. avg. 6.0 10.5
dev avg. 5.9 10.6

Table 3 shows an extreme performance drop if the di-
rect masking enhancement is used without the joint optimiza-
tion. This is consistent with the observation in [5], that the
acoustic model needs to have seen signals processed by the
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direct masking enhancement method during training to ob-
tain reasonable ASR performance with this enhancement ap-
proach. Also the parametric Wiener approach utilizing the
frame average as noise estimate benefits from the adaptation
of the acoustic model during joint optimization. In contrast
to this the parametric Wiener filter utilizing the mask based
noise estimate works equally well with the original acoustic
model and mask estimator if the Wiener parameter configura-
tion would be known before the joint optimization. Table 4 on
the other hand indicates, that knowing the correct parameter
configuration for the specific noise estimator is a key factor to
obtain improved performance with this approach. Thus a key
benefit of the approach presented here is the derivation of the
Wiener parameter configuration during the joint optimization
of the integrated model. Furthermore the results indicate, that
whether or not an adaptation of the acoustic model parame-
ters ΘAM and noise estimator parameters ΘNE is beneficial
when using the parametric Wiener filter, depends on the noise
estimator. Thus the proposed method of deriving the Wiener
parameters during joint training is preferable over a simple
grid search during decoding.

Table 3. Average WER (%) for various speech enhancement
methods before and after joint optimization. Fixed values are
used for the Wiener parameters. Those parameters have been
derived from the respective jointly optimized model averaged
over the development set.

System Dev Eval
Front-

end
Noise

estimator
Joint

training

- 6.6 11.6

DM - 29.3 32.1
× 7.0 13.4

PW
frame avg. - 7.6 13.9

× 6.2 11.4

masking - 5.9 10.5
× 5.9 10.6

Table 4. Average WER (%) for the parametric Wiener ap-
proach with the original acoustic model and mask estimator
network. The Wiener parameters values are fixed and com-
puted as averages over the development set using the jointly
trained models either using the frame averaged or mask based
noise estimate.

Front-
end Wiener param. Dev Eval

- 6.6 11.6

PW masking 5.9 10.5
frame avg. 6.9 13.0

Figure 3 shows the enhanced speech after the different
processing methods. The plots indicate, that the joint opti-
mization of the mask estimator and the acoustic model in the
direct masking approach moves the mask estimator towards
a weaker suppression of the time-frequency bins without har-
monics.
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Fig. 3. Spectrograms of F04 053C0108 STR (”The task force
report isn’t all bad”) after various processings. (a) original
signal (b) Wiener filter of jointly trained model with mask
based noise estimation (c) direct masking before joint training
(d) direct masking after joint training

5. CONCLUSION

This paper describes the integration of single channel speech
enhancement and acoustic modeling for joint parameter op-
timization. In addition to the direct masking approach e.g.
used in [5], the utilization of a parametric Wiener filter was
introduced and tested. The performance was evaluated on real
noisy data of the single channel track of the CHiME-4 data.
By utilization of the parametric Wiener filter the WER of the
real evaluation set of the CHiME-4 data was reduced from
11.6 % to 10.5 % which shows, that the parametric Wiener fil-
ter in combination with a powerful DNN based noise mask es-
timator can be beneficial for single channel noise robust ASR.
Our future work will explore approaches to avoid pretraining
of the DNN based mask estimator, employed in the paramet-
ric Wiener filter, and to instead train it from scratch during
the joint optimization. The integration of the speech enhance-
ment and the acoustic modeling presented in this work allows
for utilizing label feedback to achieve this.
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