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ABSTRACT

The CHiME-5 speech separation and recognition challenge was re-
cently shown to pose a difficult task for the current automatic speech
recognition systems. Speaker overlap was one of the main difficul-
ties of the challenge. The presence of noise, reverberation and the
moving speakers have made the traditional source separation meth-
ods ineffective in improving the recognition accuracy. In this paper
we have explored several enhancement strategies aimed to reduce the
effect of speaker overlap for CHiME-5 without performing source
separation. One is based on discarding the overlap segments us-
ing the speaker diarisation information from the challenge, another
one is a neural network driven automatic gain control enhancement
aimed to improve the previous speaker diarisation information, and
the last one is based on optimal multi-array data selection. State-of-
the-art acoustic models were used to perform the ASR experiments.
Results have shown that proposed automatic gain control method
yields word error rate (WER) reductions between 2% and 3% abso-
lute on the development set of CHiME-5.

Index Terms— automatic speech recognition, CHiME-5,
speaker overlap

1. INTRODUCTION

Modern automatic speech recognition (ASR) systems have already
achieved recognition accuracies on clean data on a par with hu-
mans [1]. However, speaker overlap, noise and reverberation still
pose serious challenges for ASR. This was recently proven in the
latest CHiME speech separation and recognition challenge (CHiME-
5) [2]. CHiME-5 challenge was primarily focused on the problem of
distant multi-microphone conversational speech recognition in ev-
eryday home environments.

The corpus was made of 20 dinner party recordings lasting about
two hours each. 16 out of the 20 recordings were used for training,
two were used for development (dev) and the other two for evalua-
tion. Each dinner party had four participants and it was divided into
three phases depending on where the speakers were located: kitchen,
dining or living room. Recordings were made using six Microsoft
Kinect devices, which were referred to as arrays or distant sensors in
our discussion below. There were two Kinects in each location and
each device had four linearly distributed microphones. Addition-
ally, each participant also had worn in-ear binaural microphones that
were used to facilitate transcription. The worn and array sets were
recorded asynchronously, therefore they had to be synchronized of-
fline using a correlation based approach. Depending on how many
arrays were available to decode the test data, the challenge had a
single-array track and a multiple-array track. The baseline CHiME-5
system achieved 81.3% WER on the single-array track. More details
about the challenge can be found in [2].

One of the main challenges of CHiME-5 is the speaker overlap.
The average percentage of speech frames where two or more speak-
ers are active at the same time is 23.8% (standard deviation 9.5%)
for the training set, and 42.1% (standard deviation 10.7%) for the
development set. Traditional source separation algorithms used to
cope with the speaker overlap problem were proven ineffective due
to the moving speakers, background noise, reverberation and lack
of spatial resolution. The participants at the challenge managed to
achieve WER improvements by combining data enhancement, ad-
vanced acoustic modeling and data augmentation, but the general
consensus is that the overlap problem in CHiME-5 is not yet solved.

Du et al. [3] have trained a speech separation model using a
two layer bi-directional long short-term memory (BLSTM) network
using non-overlapping regions from each speaker, which were then
mixed together to generate speaker-dependent training data. This
approach had two stages and it was part of a pipeline consisting
of other data enhancement, such as dereverberation, denoising or
beamforming. Kanda et al. [4] have developed a minimum variance
distortion-less response (MVDR) beamformer where the speaker
adaptive masks were estimated using neural networks or complex
Gaussian mixture models. Medennikov et al [5] have explored adap-
tation using a frame-level mask of a target speaker. Kitza et al [6]
have proposed an algorithm based on the complex Angular Central
Gaussian Mixture Model that exploited the time annotations to per-
form a guided source separation. Doddipatla et al. [7] have proposed
a speaker dependent generalized eigenvalue (GEV) beamformer [8]
to cope with the noise and the overlapped speakers. All speaker-
dependent systems exploited the speaker diarisation information
provided by the organizers for both train and test data.

In [7], we have explored a neural network supported automatic
gain control (AGC) mechanism for improving the baseline speaker
diarisation by suppressing the interfering speakers. There, the en-
hancement was applied only during the test phase. In this paper, we
expand on this idea and provide a detailed study on this method in
the context of CHiME-5 task. We have explored three enhancement
strategies aimed to reduce the effect of speaker overlap without per-
forming source separation. First approach has exploited the baseline
CHiME-5 diarisation to detect the segments where only one speaker
is active, the second one has aimed to improve the former method by
using the AGC technique recently proposed in [7], and the last one
has aimed to reduce further the effect of interfering speakers by al-
gorithmically selecting the Kinect device from where the data should
be extracted. In-depth ASR evaluations on the individual and com-
bined enhancements were performed using state-of-the-art acoustic
models (AMs). Both matched and mismatch scenarios were consid-
ered. The results presented in this paper are based on the develop-
ment set of CHiME-5 only.

The reminder of this paper is organized as follows. Section 2 de-
tails the enhancement methods used for speaker overlap suppression,
the experimental setup is described in Section 3, and the results and
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discussion are presented in Section 4. Finally, Section 5 concludes
the paper.

2. ENHANCEMENT FOR SPEAKER OVERLAP
SUPPRESSION

Speaker overlap has a negative impact on the ASR performance dur-
ing both training and testing. Three approaches were explored to
reduce the effect of speaker overlap in the context of CHiME-5 with-
out performing source separation. One was a hard speaker overlap
suppression using the baseline speaker diarisation from the chal-
lenge, another one was based on a soft overlap suppression using
frame-wise masks estimated from a speaker-dependent neural net-
work model, and the last approach was based on multi-array data
selection for reducing the interfering speech.

2.1. Hard speaker overlap suppression

Speaker diarisation information for both train and test data are avail-
able for CHiME-5. Based on the speaker label time stamps, binary
masks were estimated, where the unity gain was used when there was
only one active speaker and the zero gain was applied otherwise. The
time resolution for the binary mask was 16-ms. Short-term speech
frames were extracted at the same rate, re-scaled according to the
mask value and then overlap-and-added to synthesize the modified
waveform. This enhancement is referred to as hard overlap suppres-
sion (HOS).

2.2. Soft speaker overlap suppression using AGC

The accuracy of the baseline speaker diarisation is limited, therefore
HOS may discard useful information. For instance, an audio seg-
ment may be marked as overlapped, although the interfering and tar-
get speakers take turns. To address this limitation, we have proposed
a soft overlap suppression that would highlight the target speaker and
attenuate the interfering ones. An automatic gain control mechanism
is driven by neural network predictions to identify the frames where
the target speaker is dominant. The block diagram of the proposed
algorithm is depicted in Fig. 1.

The main component of proposed system is a deep neural net-
work (DNN) designed to perform frame-wise speaker classification.
The DNN was trained on HOS (non-overlapped) data. Input features
were 24-dimensions MFCCs with delta and delta-delta, extracted us-
ing a Hann window of length 32-ms at every 16-ms. The DNN had
three hidden layers with 1024, 512 and 256 hidden nodes, respec-
tively, and sigmoid activations. The output layer had 4 nodes, same
as the number of speakers, and the labels were one-hot vectors. The
training of the DNN was performed in TensorFlow using the soft-
max cross entropy cost function and ADAM optimizer (learning rate
1e-4). The batch size was 50 and the training was stopped after 15
iterations. For the proposed AGC enhancement, a separate DNN was
trained for each dinner party.

After DNN training, predictions were made on all speech frames
from each recoding. The maximum likelihood criterion was used to
decide the dominant speaker in each frame. Frames where the dom-
inant speaker was the target speaker had gain one, the other frames
had gain 0.001. Postfiltering was applied on the prediction vector
to reduce the noise and to smooth the transitions between frames.
The noise reduction was performed with a 11 taps median filter, and
the smoothing effect was achieved with a double exponential mov-
ing average filter whose attack constant was 0.1 and release constant
was 0.98. Finally, corrections were applied on top of the previous

gains to avoid the suppression of frames where there is no speaker
overlap.
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Fig. 1. Block diagram of the DNN-based automatic gain control
system for soft speaker overlap suppression.

2.3. Data selection using correlation analysis

The baseline acoustic model of CHiME-5 was trained using data
from the worn microphones and data from randomly chosen arrays.
However, randomly selecting the arrays from where to extract speech
is not optimal since, at a given time, a particular array may be able to
pick up a cleaner signal for the target speaker than the other arrays.
Using standard beamforming for this task is not trivial in the context
of CHiME-5 due to audio synchronization errors, speaker overlap,
background noise and reverberation.

An alternative approach was followed inspired by the correlation
analysis used to synchronize the initial recordings [2]. The method
aimed to find the Kinect having the strongest correlation peak with
the worn microphone of target speaker. The normalized correlation
coefficient was used as a metric. The search interval was the length
of the segment plus an additional time guard of one second on either
ends. The left and right channels of the worn microphone recordings
were mixed together for the correlation analysis, and only the first
channel from each Kinect device was used. This method is referred
to as data selection (DTS).

3. EVALUATION SETUP

A conventional (not end-to-end) ASR architecture was used to per-
form the experiments. ASR training and decoding were performed
in Kaldi [9].

3.1. Data

The baseline AM was trained using worn data and 100k randomly
chosen segments from the Kinects. The worn data were unprocessed
and the same for all experiments. The array data were either unpro-
cessed (baseline), or enhanced using individual HOS, AGC or DTS
modifications, or combinations of enhancements (e.g., DTS+AGC).
Less than 80k segments were generated using DTS.

Regarding the test data, as mentioned in the Introduction, the
evaluation was performed on the development set of CHiME-5.
The Kinect data of the development set were all previously en-
hanced using a weighted delay-and-sum beamformer (BF, Beam-
formIt [10]). On top of BF, additional enhancements were applied
(e.g., BF+AGC)
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3.2. Front-end

13-dimensions MFCCs and the standard HMM/GMM recipe of
CHiME-5 were used to train the alignment model. The acoustic
features for the ASR acoustic model (AM) were 40-dimensions
MFCCs. All features were normalized in mean at the segment level.

3.3. Acoustic model

Several acoustic models were tested. To reduce the turn around time
for the results, the initial experiments were performed with a sim-
pler lattice-free maximum mutual information (LF-MMI) time-delay
neural network (TDNN) AM [11]. Two experimental configurations
were used for this model. TDNN-A did not use data cleaning for
training, neither i-vectors nor speed perturbation [12]. TDNN-B did
use data cleaning and i-vectors, but no speed perturbation. The di-
mension of the i-vectors was 100.

Two more advanced AMs recently used for CHiME-5 [7] were
also tested. One was based on convolutional neural networks
(CNNs) [13] in combination with uni-directional long short-term
memory networks (LSTMs) [14]. The CNN-LSTM AM consisted
of two CNN layers followed by three LSTM layers. The CNN layers
were 2D with 256 and 128 filters, respectively (3x3 filter kernels).
Each LSTM layer had a cell dimension of 1024. The i-vectors
were bypassed from the CNNs directly to the LSTMs. The other
advanced AM was similar with the previous one, but it used bi-
directional LSTM (BLSTM) layers instead of uni-directional ones.
Both CNN-LSTM and CNN-BLSTM AMs used data cleaning, i-
vectors and speed perturbation. In all cases, the standard 3-gram
language model of CHiME-5 was used for decoding. A summary of
the AMs used for evaluation is shown in Table 1.

Table 1. Acoustic models used for the evaluation.

AM Configuration
cleaning i-vectors SP

TDNN-A - - -
TDNN-B + + -

CNN-LSTM + + +
CNN-BLSTM + + +

4. RESULTS & DISCUSSION

4.1. Single array track

The WER results of the experiments using TDNN-A AM are shown
in Table 2. Three separate TDNN-A AMs were trained using either
unprocessed data (baseline), or data enhanced with AGC or HOS
processing. The baseline training set had the most amount of speaker
overlap, while the HOS train set had the least amount of speaker
overlap.

Column-wise, the WERs are progressively decreasing from top
to bottom, confirming that the AMs trained with data having less
speaker overlap is better. Remarkably, decoding the HOS test data
on the first two AMs has yielded a sharp increase of the WER, but
not for the last AM (HOS). This indicates that the HOS processing
has introduced a large mismatch with the first two train sets, while
in the latter case the train and test sets are matched, therefore the
accuracy is improved. Since we are interested in demonstrating the
effect of AGC with the same AM, the results on the HOS dev data
have been omitted for the rest of the paper.

Table 2. Recognition accuracy in WER(%) using the TDNN-A
acoustic model (single array track).

Train data Dev data enh.
BF BF+HOS BF+AGC

Baseline 88.3 98.5 88.2
AGC 87.9 97.1 86.6
HOS 87.2 85.0 85.6

The results in Table 2 show that AGC improves the robustness of
the baseline AM when the enhancement is applied on the train data,
and it yields lower WERs when applied on the test data. One may
notice the relatively modest improvement for the baseline TDNN-
A AM with AGC enhancement. However, since AGC is aiming to
isolate the target speaker from the interfering background, it is able
to provide complementary information that can improve the overall
WER. To test this hypothesis, we have combined the lattices of the
systems with and without AGC (Table 3). As shown in Table 3,
the performance of the combined system (A+B) was significantly
better than the performance of the baseline system (A), confirming
the hypothesis above.

Table 3. System combination with the TDNN-A acoustic model
(single array track).

Train data Dev data enh.
BF (A) BF+AGC (B) A+B

Baseline 88.3 88.2 86.0
AGC 87.9 86.6 84.8
HOS 87.2 85.6 83.3

A similar analysis was performed using more advanced acoustic
models (Table 4). In this case the AMs were trained with unpro-
cessed data only. Noticeably, the absolute WERs improved by more
than 14% with the CNN-LSTM compared with the TDNN-A model,
and the AGC enhancement was shown to consistently improve the
performance in all cases. Note that the acoustic models did not share
the same training settings (see Table 1), however, we have shown
in [7] that the CNN-LSTM clearly outperforms the TDNN for the
same training configuration.

Table 4. Recognition accuracy in WER(%) using different acoustic
models trained with unprocessed data (single array track).

AM Dev data enh.
BF (A) BF+AGC (B) A+B

TDNN-A 88.3 88.2 86.0
TDNN-B 80.9 80.1 77.2

CNN-LSTM 74.0 74.3 71.8

4.2. Multiple-array track

Similar results were found for the multiple array case where there
was no restriction on the Kinect device used to decode the test data.
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Table 5. Recognition accuracy in WER(%) using the TDNN-A
acoustic model (multiple-array track). Second left-hand column is
the single array case.

Train data Dev data enh.
BF BF+DTS BF+DTS+AGC

Baseline 88.3 86.3 85.8
AGC 87.9 85.7 84.5
HOS 87.2 84.6 83.6
DTS 85.0 83.1 82.5

Therefore, the data selection (DTS) approach described in the pre-
vious section was used to choose the best array candidate for each
speech segment. In a first round of experiments, DTS was also uti-
lized for selecting the training data for AMs. The WER results are
depicted in Table 5.

Compared with the baseline case in Table 2, the DTS TDNN-A
model has achieved more than 3% absolute WER reduction on all
test sets. Regarding the impact of AGC enhancement on the evalua-
tion data, that is improving the recognition accuracy in all cases (last
column in Table 2). Same as for the single array case, combining
the lattices of the decoded evaluation data with and without AGC
has yielded between 2 and 3% absolute WER reduction, confirming
the complementary nature of the information contained in the AGC
signal (Table 6).

Table 6. System combination with the TDNN-A acoustic model
(multiple-array track).

Train data Dev data enh.
BF+DTS (C) BF+DTS+AGC (D) C+D

Baseline 86.3 85.8 83.6
AGC 85.7 84.5 82.5
HOS 84.6 83.6 80.5
DTS 83.1 82.5 80.1

In Table 7, the performance of DTS and AGC was assessed with
the advanced acoustic models. Again, the WER improvements by
using AGC were consistent with the previous experiments.

Table 7. Recognition accuracy in WER(%) using different acoustic
models trained with unprocessed data (multiple-array track).

AM Dev data enh.
BF+DTS (C) BF+DTS+AGC (D) C+D

TDNN-A 86.3 85.8 83.6
TDNN-B 78.6 77.7 74.7

CNN-LSTM 71.6 71.1 68.9

4.3. Speaker-dependent GEV (single-array track)

A last set of experiments was performed using the speaker-dependent
GEV (SDGEV) enhancement proposed in [7]. Only the single-array
track results were available at the time this manuscript was written.

Table 8. Recognition accuracy in WER(%) using SDGEV data en-
hancement [7] (single array track).

Dev data enh.
SDGEV (E) SDGEV+AGC (F) E+F

CNN-BLSTM
(SDGEV enh.) 64.9 65.0 63.7

In this case, the AM was CNN-BLSTM and both train and test
data were enhanced using SDGEV, while AGC was applied only
on the test set. Results are depicted in Table 8. Noticeably, the
performance for system F (SDGEV+AGC) was slighly worse than
for the baseline system E (SDGEV), the reason being that there is a
mismatch between the training set and the test set of system F, while
there is no mismatch for system E. Nevertheless, by fusing system
E and system F, the WER still drops significantly (last column in
Table 8), indicating the complementary nature of SDGEV and AGC
enhancements.

A detailed analysis of the WER has shown that the AGC is ef-
fective in reducing the insertion error, which suggests a decrease of
the speaker overlap and therefore a better speaker diarisation. The
effect of varying the amount of worn microphone (‘clean’) training
data has not been assessed, however, increasing the amount of clean
training is likely to increase the mismatch between the train and the
test sets (the decoding is performed on the array data), and thus wors-
ening the recognition accuracy.

In the future we will explore combining the AGC with source
separation. AGC will be used to predict the audio frames where only
one speaker is active, while the frames with overlapped speakers will
be processed using source separation algorithms.

5. CONCLUSIONS

In this paper we have performed a thorough analysis of a time-
domain enhancement method aimed to reduce the effect of speaker
overlap for the CHiME-5 task. The proposed method was an au-
tomatic gain controller driven by a DNN-based speaker classifier
that would improve the speaker diarisation. ASR experiments with
state-of-the-art acoustic models have shown that the proposed ap-
proach yields WER reductions between 2 and 3% absolute on the
development set of CHiME-5.
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