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ABSTRACT

This paper presents a novel heterogeneous-input multi-channel
acoustic model (AM) that has both single-channel and multi-channel
input branches. In our proposed training pipeline, a single-channel
AM is trained first, then a multi-channel AM is trained starting from
the single-channel AM with a randomly initialized multi-channel
input branch. Our model uniquely uses the power of a complemen-
tal speech enhancement (SE) module while exploiting the power
of jointly trained AM and SE architecture. Our method was the
foundation for the Hitachi/JHU CHiME-5 system that achieved the
second-best result in the CHiME-5 competition, and this paper de-
tails various investigation results that we were not able to present
during the competition period. We also evaluated and reconfirmed
our method’s effectiveness with the AMI Meeting Corpus. Our
AM achieved a 30.12% word error rate (WER) for the development
set and a 32.33% WER for the evaluation set for the AMI Corpus,
both of which are the best results ever reported to the best of our
knowledge.

Index Terms— Acoustic model, speech recognition, speech en-
hancement, deep learning

1. INTRODUCTION

Thanks to the recent advances in deep-learning-based speech recog-
nition [1–3], word error rates (WERs) for some datasets have be-
come close to (e.g., Switchboard [4, 5]) or just below (e.g., Lib-
riSpeech in [6] and [7]) the level of human transcribers. However,
despite this progress, noise and reverberation still severely degrade
WERs. Multi-talker speech recognition with a distant microphone
is one of the most difficult settings for speech recognition because
of the difficulty of separating the target speaker’s speech from other
speech. One example is meeting speech recognition with a distant
microphone. Another example is conversational speech recognition
in a home environment, which helps develop a highly intelligent per-
sonal agent. It is known that the WERs for such situations are still
very high (30% [8] to 80% [9]) even with state-of-the-art speech rec-
ognizers.

One way to improve distant multi-talker speech recognition
is to improve the robustness of acoustic models (AMs) with data
augmentation techniques [10], better training objectives [7, 11–14],
improved model architecture [15, 16], etc. Another way is im-
proving speech enhancement (SE) techniques. Recent progress in
deep-learning-based speech separation showed dramatic improve-
ment of WERs in many scenarios [17–23]. However, the 5th CHiME
Speech Separation and Recognition Challenge (CHiME-5) [9] re-

vealed to us that conventional speech separation techniques led only
marginal improvements under noisy far-field multi-talker condi-
tions. We internally evaluated deep clustering [19], permutation
invariant training [20], chimera++ networks [21], and a speaker-
aware neural beamformer [22, 23], but none of them successfully
improved the accuracy for the CHiME-5 dataset. We eventually
found that the parameter-based speaker adaptation of the neural
beamformer slightly improved the WER [24], but the improvement
by that method remained minor compared with the improvements
reported in past literature under easier conditions (e.g., [17, 18]).

Recently, the unified optimization of AM and SE was proven
effective for noisy conditions [15, 25–30]. For example, some
papers [27, 28] proposed a convolutional neural network (CNN)-
based multi-channel SE block that was jointly trained with a neural
network-based AM. In [29], a speaker-aware SE block was jointly
trained with an AM by using an additional speaker representa-
tion network. Paper [30] proposed the combination of a trainable
multi-channel beamformer with end-to-end speech recognition. All
the works were promising, and our work is following in the same
direction as previous studies on the joint training of the AM and SE.

In our paper, we propose novel heterogeneous-input multi-
channel acoustic modeling. The unique feature of our method is
that our model architecture has two input branches: one for single-
channel signals and another for multi-channel signals. We propose
an AM training scheme where we first train a single-channel AM,
then a multi-channel AM is trained starting from the single-channel
AM with a randomly initialized multi-channel input branch. Our
experiments in CHiME-5 and AMI Corpus showed that this ar-
chitecture and training scheme enables us to use the power of a
complemental SE module while exploiting the power of jointly
trained AM and SE architecture.

In summary, our proposed AM has the following advantages:

• It provides an easy way to use a complemental SE module
while exploiting the power of a jointly trained AM and SE
model.

• It produces state-of-the-art accuracy. It was the foundation
for the second-best result at the CHiME-5 competition [9]. It
also achieved, to the best of our knowledge, the best WER
ever reported for AMI Corpus.

This paper corresponds with the extended investigation of our
CHiME-5 paper [24]. We present systematic experimental analyses
(including the AMI evaluation to further investigate the effective-
ness of our proposed AM) that we could not conduct during the
competition period due to the limited development time.
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Fig. 1. AM architecture. A number with an arrow indicates a time
splicing index, which forms the basis of TDNN [31].

2. HETEROGENEOUS-INPUT MULTI-CHANNEL AM

2.1. Overview of AM architecture

Figure 1 depicts the multi-channel AM architecture that we used for
our evaluation (both for CHiME-5 and AMI). In this figure, the red
blocks represent a convolutional neural network, the blue blocks rep-
resent a bidirectional long short-term memory (BiLSTM) or a resid-
ual BiLSTM (RBiLSTM) that we proposed in [24], and the green
blocks represent a time-delay neural network [31].

The unique part of this model architecture is in its input branch.
This model has input branches for single-channel features and an
input branch that accepts multi-channel features. We use mel-
frequency cepstral coefficients (MFCCs) and log-Mel-filterbank
(FBANK) as input for the single-channel branch. On the other hand,
we use two types of features that represent multi-channel input
signals for the multi-channel branch. One feature is log amplitude
log |xi,f,t| for each microphone i (= 1, ..., N), time frame t, and
frequency bin f , where N is the number of input channels. Another
feature is the phase difference between each microphone and the
first microphone as follows.

cos(∠(xi,f,t)− ∠(x1,f,t)) (i = 2, ..., N), (1)
sin(∠(xi,f,t)− ∠(x1,f,t)) (i = 2, ..., N). (2)

2.2. Training strategy for the proposed AM

Our proposed training pipeline for the heterogeneous-input multi-
channel AM is as follows.

1. 1-ch AM training. A neural network without N -ch input
branch is initialized with random values and trained using

1-ch training data based on an ASR training objective (e.g.,
lattice-free maximum mutual information (LF-MMI) [13]) .

2. N -ch AM training. A randomly initialized N -ch input
branch is added to the trained 1-ch AM, and parameters are
trained using N -ch training data based on the ASR training
objective.

This training pipeline is inspired by the curriculum learning concept
[32] in which the neural network is first trained with an easy problem
and then trained with more difficult problems.

One important point of our training scheme is in the training
of the 1-ch AM (the first step of the training pipeline). If robust
spectral representation of acoustics is learned in this step, the N -
ch input branch can concentrate on learning the spacial beamform-
ing property. To do so, we applied many data augmentation tech-
niques [10, 24, 33–35] for the 1-ch AM training, such as speed and
volume perturbation [34], reverberation, noise perturbation [35], and
bandpass perturbation [24]. We also used both enhanced and non-
enhanced speech signals for training, which were also effective in
our experiment. Since the objective of the first step is learning ro-
bust spectral representation, we applied as many data augmentation
methods as possible even if it is a phase-destructive method.

In addition, at the second step of the training pipeline above, we
tested the two training options below.

Full update: Entire parameters are updated.
Partial update: Only parameters in the N -ch input branch are up-

dated.

The partial update aims to mitigate the overfitting problem by reduc-
ing the number of training parameters. As the next section shows,
this trick was very effective in our experiments.

3. EXPERIMENT

3.1. Experiments on CHiME-5

3.1.1. Experimental settings

We first evaluated our method with the CHiME-5 dataset [9]. This
dataset contains home party recordings in which four participants
spoke spontaneously in the kitchen, dining room, and living room.
Six microphone arrays, each of which had four microphones, were
used for the recordings. In addition, each participant put on a bin-
aural microphone. While both microphone array data and binaural
microphone data were allowed to be used for training AMs and LMs,
only microphone array data was used for evaluation. There were two
tasks; one used only reference array data (single array track) and one
used all the arrays (multiple array track). In this paper, we used the
setting for a single array track. A baseline program based on the
Kaldi toolkit [36] and ESPnet [37] was released by the CHiME-5 or-
ganizers, and our experiments were conducted based on Kaldi. Due
to very difficult recording conditions, the WER for the CHiME-5
official baseline system was 81.1%.

Training was 40.6 hours, development was 4.5 hours, and eval-
uation data was 5.2 hours. As explained in Section 2.2, we applied
speed and volume perturbation (×3) [34], reverberation and noise
perturbation (×2), [35] and bandpass perturbation (×2) [24] for the
first step of the training pipeline, which produced roughly 4,500
hours of training data. Table 1 shows the effect these data augmen-
tation techniques had using the CHiME-5 baseline TDNN architec-
ture. As shown in the table, the more data augmentation techniques
were applied, the better WER became. We used the official lexi-
con and language model for decoding. Note that we only reported
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Table 1. Effect of data augmentation for the CHiME-5 baseline
TDNN [9]. This table is cited from Table 1 of [24].

Data Epochs SP/VP RP/NP BP Ref-Array
W +R1 4

√
79.65

W +R1 +B1 4
√

78.72
W +R1..6 +B1..6 4

√
78.51

W +R1..6 +B1..6 2
√ √

77.26
W +R1..6 +B1..6 1

√ √ √
76.31

SP/VP: speed & volume perturb. RP/NP: reverb. & noise perturb., BP: bandpass perturb.

In data column, W : worn mic., Ri : raw 1ch of i-th array, Bi : BeamformIt 1ch of i-th array.

Table 2. WERs (%) of the single-channel / multi-channel AMs with
different speech enhancement methods for CHiME-5.

AM Frontend for 1-ch input Frontend for 4-ch input Ref-Array
1-ch Raw(CH1) - 66.65
1-ch WPE - 66.20
1-ch WPE + NN-MVDR - 63.97
4-ch Raw(CH1) Raw 63.16
4-ch WPE WPE 62.74
4-ch WPE + NN-MVDR WPE 61.91

WERs of development data because transcriptions of the evaluation
data were not published and we were not able to calculate the WER
of the evaluation data.

Figure 1 shows our AM architecture. We used a 40-dim MFCC
and a 40-dim FBANK without normalization for the 1-ch input
branch. In addition, a 100-dim i-vector was extracted every 100
msec and it was used for online speaker/environment normaliza-
tion [38]. For the N -ch input branch, we used a 257-dim log ampli-
tude for each microphone and a 510-dim phase difference (255-dim
for cos() and 255-dim for sin()) for the N − 1 microphone pairs.
The utterance-based mean and variance normalization were applied
for the log amplitude feature, while no normalization was applied
for the phase difference feature. Through our AM training, we
used LF-MMI as a training objective. We applied l2-regularization
and cross-entropy-regularization [13] with scales of 0.00005 and
0.1, respectively. In addition, we used a backstitch technique [39]
with the backstitch scale 1.0 and backstitch interval 4. Although
we also applied lattice-free state-level minimum Bayes risk (LF-
sMBR) training [7] in the CHiME-5 competition, we omitted it to
simplify the experiments. Instead of LF-sMBR, we investigated a
different number of training iterations of LF-MMI with different
training schemes that we were not able to fully investigate during
the CHiME-5 competition period. Section 3.1.3 discusses the results
of this investigation.

3.1.2. Comparison of single-channel and multi-channel AMs

Table 2 compares WERs with a 1-ch AM that is trained for the first
stage of our training pipeline and a 4-ch AM after adding the 4-
ch input branch. We show results with a weighted prediction er-
ror (WPE) [40] and with a mask-estimation neural-network-based
MVDR beamformer (NN-MVDR) with a speaker adaptation tech-
nique [24], which we found to be the best for the CHiME-5 dataset.
Note that results with BeamformIt [41] were omitted as it was found
to be ineffective for this dataset [24].

Table 2 shows that the combination of WPE and NN-MVDR
produced about 3.7% of the absolute WER improvement and
achieved 63.97% of the WER. Then, we found that the 4-ch AM
achieved a better, 63.16% WER without using any other SE tech-
niques.1 By applying the WPE and NN-MVDR, we further ob-

1Note that the values in Table 2 are slightly better than the values reported

Fig. 2. Comparison of AM training scheme.

Table 3. WERs (%) with different features for 4-ch input branch for
CHiME-5.

AM Feature for 4-ch input branch Ref-Array
log-amp. phase-diff.

1-ch n/a n/a 66.65
4-ch

√
65.06

4-ch
√

63.23
4-ch

√ √
63.16

tained about a 1.3-point absolute WER improvement, and we finally
achieved 61.91% of the WER. We noted that applying NN-MVDR
achieved additional improvement for our 4-ch AM, which was real-
ized through the 1-ch input branch. This is a very unique property
of our AM that has a 1-channel input branch as well as a N -channel
input branch.

3.1.3. Comparison of training strategy

In our training pipeline, we first trained a single-channel AM and
then continued the training with a N -channel input branch. We eval-
uated the effectiveness of this training procedure. Figure 2 compares
the three training strategies. For the “4-ch (full update)” setting, we
initialized entire parameters of 4-ch AM and trained all parameters
based on LF-MMI. As shown in the figure, this method produced sig-
nificantly worse results compared with the proposed two-pass train-
ing scheme (“1-ch → 4-ch (full update)”). By comparing “full up-
date” and “partial update” (explained in Section 2.2), we found that
the partial update effectively mitigated the overfitting problem and
achieved the best results.

3.1.4. Comparison of multi-channel features

We also compared the input features for the N -ch input branch. We
conducted an ablation study in which we used only the log-amplitude
feature or phase-difference feature. Table 3 shows that both the log-
amplitude feature and the phase-difference feature improved the ac-
curacy while the improvement by the phase-difference feature was
relatively small. Interestingly, we observed some improvement even
when we used only the phase-difference feature for the 4-ch input
branch. Note that this result was not obtained by the AM with only
phase information; our AM always accepts spectral information via
the 1-ch input branch. We thought that the phase information con-
tained some complemental information for the spectral information,
such as information for voice activity detection.

in [24] due to correcting the misconfiguration of the decoder settings that we
found after our CHiME-5 submission.
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Table 4. WERs (%) of the 1-ch / 8-ch AMs for AMI Corpus in the settings of far-field ASR.
AM Training data for 8ch-AM Evaluation data Dev Eval

1ch-branch 8ch-branch 1ch-branch 8ch-branch
1-ch - - ArrayRaw (CH1) n/a 33.39 36.41
1-ch - - BeamformIt n/a 31.10 33.21
8-ch ArrayRaw (CH1) ArrayRaw ArrayRaw (CH1) ArrayRaw 31.81 34.91
8-ch ArrayRaw (CH1) ArrayRaw BeamformIt ArrayRaw 30.72 33.14
8-ch ArrayRaw (CH1) + BeamformIt ArrayRaw ArrayRaw (CH1) ArrayRaw 32.02 35.01
8-ch ArrayRaw (CH1) + BeamformIt ArrayRaw BeamformIt ArrayRaw 30.12 32.33

Table 5. Comparison of WERs (%) on AMI Corpus. Note that the
conventional multi-channel AMs could not be used with an addi-
tional SE module.

AM Channels of AM Speech Enhancement Dev Eval
TDNN-BLSTM [16] Single - 37.0 40.4
TDNN-BLSTM [16] Single BeamformIt 34.2 36.6
Attention-LSTM [15] Multi - 35.5 41.0

CNN3D-TDNN-LSTM [28] Multi - 32.6 35.4
Ours Single+Multi - 32.0 35.0
Ours Single+Multi BeamformIt 30.1 32.3

Table 6. WERs (%) with different features for 8-ch input branch for
AMI (w/o BeamformIt).

AM Feature for 8-ch input branch Dev Eval
log-amp. phase-diff.

1-ch n/a n/a 33.39 36.41
8-ch

√
32.70 35.78

8-ch
√

32.13 35.17
8-ch

√ √
32.02 35.01

3.2. Experiments on AMI meeting corpus

3.2.1. Experimental settings

As a second experiment, we evaluated our models by using the AMI
Meeting Corpus [42]. The AMI Corpus contains about 100 hours
of meeting recordings from four participants. The recordings were
conducted using individual headset microphones and an 8-ch mi-
crophone array simultaneously. We prepared training, development,
and evaluation data by using scripts in the Kaldi toolkit. The AM
architecture was the same with the settings used in CHiME-5 except
that there were 8 microphones instead of 4.

We first trained a 1-ch AM (AM without N -ch input branch) by
using individual headset data (“Headset”) as well as the array’s first
channel data (“ArrayRaw”) and array data processed by BeamformIt
(“BeamformIt”). We applied speed, volume, reverberation, noise,
and bandpass perturbation (×12) to the “Headset” training data, and
we applied speed, volume, and bandpass perturbation (×6) to the
“ArrayRaw” and “BeamFromIt” training data. WERs for this 1-ch
AM with and without BeamformIt are shown in the first two rows of
Table 4.

Next, we trained the 8-ch AM starting from the 1-ch AM with
a randomly initialized multi-channel input branch. In this step,
we updated only the parameters of the 8-ch input branch based on
the LF-MMI. The results are shown in the lower part of Table 4.
Here, we compared the case when we trained the 8-ch AM by feed-
ing only “ArrayRaw” data into the 1-ch input branch and the case
when we fed “ArrayRaw” and “BeamformIt” data into the 1-ch input
branch. The best results were obtained when we fed the “ArrayRaw”
and “BeamformIt” data into the 1-ch input branch in training, and
BeamformIt was applied to the 1-ch input branch in decoding. Our
model finally achieved a 30.12% WER for the development set and

a 32.33% WER for evaluation set, both of which were the best re-
sults ever reported for the AMI Corpus to the best of our knowledge
(Table 5).

As a supplemental experiment, we evaluated the features for
the 8-ch input branch, the results of which are presented in Table
6. As with the CHiME-5 evaluation, we confirmed that both log-
amplitude and phase-difference features contributed to the improve-
ments while the log-amplitude feature was the main source of im-
provement. Finding a better way to utilize phase information is our
important future work.

4. CONCLUSION

In this paper, we proposed heterogeneous-input multi-channel
acoustic modeling in which AM has both single-channel and multi-
channel input branches. In our proposed training pipeline, a single-
channel AM was trained first, then a multi-channel AM was trained
starting from the single-channel AM with a randomly initialized
multi-channel input branch. Our model uniquely uses a complemen-
tal SE module while preserving the effectiveness of joint SE and AM
training, the effectiveness of which was confirmed with CHiME-5
and AMI experiments.
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