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ABSTRACT

In this paper we investigate the automatic generation of ToBI-
style prosody labels. The work is motivated by the idea of
using prosodic information to facilitate the automatic lexi-
con discovery for unseen and under-resourced languages for
which sufficient training data is not available. Specifically,
the prosodic boundaries are meant to serve as additional top-
down information in the word segmentation step. To this
end we attempt to apply the trained Japanese models cross-
lingually on a language not seen in training (English). We
generate break index labels, using only the speech signal as
input, with no additional information given at test time in the
form of transcripts or prior word segmentations. The labels
are generated using bidirectional LSTMs trained on sponta-
neous Japanese speech. We evaluate the quality of these la-
bels using established metrics, with an F1 score of 0.55 for
cross-lingual prosodic break detection (given a tolerance of
80 ms).

Index Terms— Prosody detection, ToBI label generation,
cross-lingual speech processing, word segmentation

1. INTRODUCTION

There are currently over 7000 living languages in the world
[1], many of which are only spoken by small and often shrink-
ing groups of speakers and are therefore threatened by extinc-
tion [2]. A central task in documenting these languages is
word discovery, which is preceded by the step of segmenting
the speech signal into word-candidate segments.

Language documentation is a time-consuming task, mak-
ing the process ultimately expensive. Natural Language
Processing (NLP) systems could be useful tools to facilitate
the exploration and documentation of previously unseen lan-
guages. Unfortunately, such systems are often reliant on large
quantities of annotated data, which is generally not available
for smaller languages. One strategy to circumvent this issue
is to exploit the similarities between languages by training
a system on one or more well-resourced languages and then
applying it to the under-resourced target language.

Infants have been shown to recognize prosody before ac-
quiring the ability to segment speech into smaller segments
such as words and clauses [3] [4]. We therefore will attempt
to generate prosodic boundaries, which could then be used as
additional information for the word segmentation process.

Specifically, our goal is to create prosodic break index
labels as introduced in [5] (for English) and [6] [7] (for
Japanese). We intend to achieve this by applying neural
network models in a cross-lingual fashion in order to create
these labels for a language not seen in training. Notably, we
will only use the speech signal as input when applying the
model at test time; no additional information is provided to
the system in form of transcriptions or existing segmentations
of any kind.

2. RELATED WORK

Both, the effects of applying prosodic information to the prob-
lem of word segmentation and automatically generating ToBI
style prosody labels have been explored in past research. In
[8], [9] Ludusan et al. have shown that using oracle prosodic
information as well as boundaries detected based on acoustic
cues can improve the performance of term discovery.

As for generating ToBI and other prosodic labels, in [10]
Syrdal et al. found ToBI labels predicted from text were able
to speed up labelling by humans, another potential application
of automatically generated ToBI labels. In [11] Chen et al.
were able to generate a simplified set of prosodic labels using
ANN- and GMM-based models that use phoneme transcrip-
tions and acoustic observations, with prosody-dependent pro-
nunciations pre-compiled in a lexicon. Rosenberg has pub-
lished his AuToBI system for automatic ToBI annotation in
[12]. AuToBI uses speech recordings and TextGrid files with
existing word segmentations as input to produce ToBI labels
for English speech. In [13], [14] the same system was used
for cross-language prominence and boundary detection. Sim-
ilarly, the Eti ToBI tool published in [15] by Elvira-Garcia
uses a speech wave form and a TextGrid file containing syl-
lable boundaries and marks for lexically stressed syllables.
With these it generates labels according to the Sp ToBI and
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Cat ToBI conventions for Spanish and Catalan, respectively.
The mentioned systems for ToBI label generation are ei-

ther applied monolingually, or use some sort of textual input
(transcriptions, word segmentation) in addition to the speech
recording, or both. As our goal is to support word segmen-
tation for languages for which this type of data is not avail-
able, our approach will use only un-annotated speech at test
time, without any additional information given. Furthermore,
we also apply this restriction when testing these models in a
cross-lingual scenario.

3. CROSS-LINGUAL GENERATION OF TOBI
BREAK INDEX LABELS

Supervised models rely on large quantities of annotated data,
which are often not available for smaller languages. We ad-
dress this problem by using models in a cross-lingual fashion.

Human languages share some common characteristics,
which is largely due to the restrictions placed on speech
production by the human vocal tract. We can exploit these
similarities by training models on a language that offers ade-
quate amounts of training data, and applying them to another
language not seen in training. In the past we have used this
approach to segment speech into phonemic segments [16],
and will now extend it to prosodic boundary detection.

Speech is not only segmented into phonemes and words,
but also into larger supra-word segments like phrases and
breath groups. The ToBI prosody annotation standard uses
several levels of prosodic breaks to model these word groups.
Table 1 shows the basic break types used in the English [5]
and Japanese [6] ToBI standards.

Short description ToBI J ToBI

Strong cohesion 0 0
Normal word boundary 1 1
Lower-level perceived grouping 2 n/a
Intermediate/accentual phrase 3 2
Intonational phrase 4 3

Table 1. Basic prosodic break levels for English (ToBI) and
Japanese (J ToBI) labelling systems

As we can see there are some differences, mainly the ad-
ditional level 2 boundary present in the English ToBI stan-
dard (as used in the Boston Radio Corpus). This list is also
disregarding the various potential modifiers added to the ex-
isting J ToBI labels in the X-JToBI extension [7] for sponta-
neous Japanese speech. Overall, the similarities suggest that,
like phoneme segmentation, this is a characteristic of speech
that should be somewhat universal across languages. Pausing,
changes in intonation and variations in intensity of the speech
signal are fairly consistent markers of prosodic events.

We will therefore take a prosody-annotated corpus of
Japanese speech to train a neural network in a supervised

fashion, then apply the model to speech from both, the train-
ing language as well as a language the system has no im-
mediate knowledge of (English). We suspect that due to the
similarities in the way prosody is expressed across languages,
the system will be able to use the knowledge gained from
one language to segment speech from another language with
similar degrees of success.

As for the model, we choose bidirectional long short-term
memory neural networks (BiLSTM). These have been shown
to work well on time-series labelling tasks, such as boundary
detection [17], [18]. The network is relatively light-weight,
consisting of two hidden layers with 1024 BiLSTM cells
each.

4. DATA

4.1. Corpora

The Corpus of Spontaneous Japanese (CSJ) [19] contains a
large amount of annotated recordings, a sub-set of which also
offers ToBI-style labels as defined in [7]. For our experiments
we will use the ”academic” and ”simulated public speech”
parts of the prosody-annotated CSJ, which amounts to ap-
proximately 38 hours of data.

The Boston University Radio News Corpus (BRC) is split
into two parts, radio and lab news. The lab news part of the
corpus consists of a sub-set of the original radio broadcast
stories, re-recorded in a laboratory, amounting to a total of
approx. 78 minutes of speech.

4.2. ToBI Prosodic Break Index Labels

The main set of basic labels introduced in the J ToBI standard
consists of four break index levels ranging from 0 (strong co-
hesion) to 3 (strong degree of disjuncture) [6]. X-JToBI ex-
tends this set with various modifiers for boundaries that lie
between these levels. It also adds additional types of labels
and modifiers for word fragments, word-internal pauses and
prosodic filler [7]. Since many label types and modifiers are
very rare in the data, training robust models on them is not
feasible. We will therefore rewrite the labels before training
in two different ways.

The first set of experiments will be conducted using a sim-
ple binary mapping, after which we will run a second set of
experiments using all of the basic labels (without modifiers).
For the multi-class experiments, we are mapping the English
ToBI labels to their respective counterparts according to ta-
ble 1.

5. EXPERIMENTS

5.1. Network architecture and features

For our experiments we are using a relatively light-weight
BiLSTM consisting of two hidden layers with 1024 BiLSTM
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cells each, implemented with the PyTorch deep learning plat-
form. Activations and loss calculation use the tanh and cross-
entropy loss functions, respectively.

Due to the continuous nature of the speech and the rela-
tive similarity of features in neighbouring frames, predicting
frame-exact boundaries is extremely difficult. For this reason,
when attempting to evaluate boundary detection, the system
is often granted a tolerance. For phoneme segmentation toler-
ances of 20 to 40 ms have been used in the past [20][21] [22].
Since the time scale for prosodic events is larger than that for
phonemic and sub-phonemic segmentation, we will generally
report scores for tolerances of 40 and 80 ms, but also for exact
matches (0 ms).

Another problem when training neural networks for this
kind of task is the extreme skewedness of the data. The vast
majority of frames does not represent a boundary (98.6%). To
counteract this, PyTorch allows declaring weights for individ-
ual classes, which are applied during loss calculation.

Finally, the system tends to produce clusters of break
labels around those time indices it believes to be prosodic
boundaries. This is likely due to the similarity of feature
vectors representing neighbouring frames of the speech sig-
nal. Until we devise a way to prevent this behaviour, we will
apply post-processing to the network output by reducing any
label clusters to the central time index of that cluster.

As for feature extraction, we used the KALDI speech
recognition toolkit [23] to extract MFCCs with a 25 ms
window and 10 ms frame shift. After adding deltas and
delta-deltas the process resulted in 39-dimensional feature
vectors.

5.2. Results on Japanese data

First we applied the model trained on binary labels (bound-
ary / no boundary) to Japanese data also taken from the CSJ.
Results are shown in table 2.

As we can see, tolerance significantly impacts the scores.
Exact matches (0 ms tolerance) are extremely rare, as shown
by the low precision, and the system only catches approx.
20% of all the boundaries in the reference. But even a tol-
erance similar to that used in phoneme recognition (40 ms)
yields much better results, with 44.9% of predicted bound-
aries within four frames of a true boundary. At 80 ms we are
able to find 61.37% of all boundaries in the ground truth.

We can also see that the biggest improvements in scores
take place until around 30-40 ms of tolerance. Giving the sys-
tem more leeway than that still results in additional predicted
boundaries being classified as correct, but the vast majority
are within 30-40 ms of a reference boundary.

Next we trained a network to perform a multi-class la-
belling task. The results for 80 ms of tolerance can be found in
table 3. Obviously there are vast differences in performance
with regard to the various break label types. Word fragments
(D) and word internal pauses (P) have proven very difficult. It

Tolerance (ms) Precision Recall F1 score F1 change

0 0.1614 0.2013 0.1768 -
10 0.3539 0.4403 0.3873 +0.2105
20 0.4100 0.5102 0.4488 +0.0615
30 0.4332 0.5385 0.4741 +0.0253
40 0.4490 0.5583 0.4914 +0.0173
50 0.4613 0.5737 0.5049 +0.0135
60 0.4726 0.5877 0.5173 +0.0124
70 0.4832 0.6011 0.5290 +0.0117
80 0.4932 0.6137 0.5400 +0.0110

Table 2. Results for binary labels on CSJ data

Break type Precision Recall F1 score

1 0.4947 0.6272 0.5504
2 0.3306 0.1620 0.2114
3 0.4723 0.3770 0.3991
D 0.5601 0.0113 0.0161
F 0.3993 0.2000 0.2514
P 1.0000 0.0705 0.0705

Table 3. Results for multi-class labels on CSJ data (for 80 ms
tolerance)

should be noted that these are also the two least frequent label
types in the data. Of the disfluencies, the prosodic Filler (F)
was the easiest to detect. Level 2 breaks (accentual phrase)
were the most difficult of the main types. Level 1 prosodic
breaks (AP-medial word boundaries) show the highest scores,
followed by level 3 breaks (intonation phrase).

5.3. Results on English data

For comparison, we also trained monolingual English systems
on the majority of the BRC lab news data (∼65 minutes), re-
ferred to as ”BRC” in tables below. We then applied these
systems and the Japanese ones to English test data. Results
for binary labels are shown in table 4.

System Tolerance (ms) Precision Recall F1 score

BRC
0 0.0751 0.0931 0.0825
40 0.4730 0.5934 0.5226
80 0.6308 0.7880 0.6956

CSJ
0 0.0716 0.0636 0.0673
40 0.3963 0.3510 0.3716
80 0.5914 0.5216 0.5533

Table 4. Results for binary labels on BRC data

The scores show that on this task the cross-lingual system
loses between ∼20 and 30% performance (as indicated by F1
score), depending on tolerance. But it is able to detect more
than half of the prosodic boundaries in the English test data
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within a tolerance of 80 ms, without ever having been exposed
to English speech in training. Compared to the monolingual
results presented in table 2, we see that frame-exact perfor-
mance is noticeably worse. However, as we increase toler-
ance, scores improve drastically, so that even in cross-lingual
application 59.14% of all predicted boundaries fall within 80
ms of a true boundary.

Finally, we applied the multi-class model to the BRC data,
results for which (at 80 ms tolerance) can be found in table 5.

System Break type Precision Recall F1 score

BRC
1 0.5238 0.3614 0.4177
2 0.6330 0.0137 0.0225
3 0.7031 0.1700 0.2555

CSJ
1 0.3816 0.6578 0.4765
2 0.1279 0.1299 0.1229
3 0.2204 0.1974 0.2050

Table 5. Multi-class results on BRC data (80 ms tolerance)

The X-JToBI labels for disfluencies do not exist in the
English ToBI annotations and are therefore not part of these
results. As in the binary case, compared to the monolin-
gual Japanese results from table 3, scores are overall lower.
This is to be expected considering the increased difficulty
inherent in cross-lingual model application. But especially
the scores for type 1 breaks are close to the performance re-
ported on Japanese. Also, the cross-lingual system actually
performs better for some break types (1, 2) when compared
to the monolingual English system.

5.4. Discussion

We have trained BiLSTMs on Japanese speech with ToBI-
style prosodic break annotations. Due to the relative rarity
of some labels we merged infrequent types, resulting in one
binary and one multi-class mapping.

We then applied the trained models to both Japanese
and English data, and compared cross-lingual results with a
monolingual English system. The binary model was able to
detect prosodic breaks on Japanese data with some accuracy.
Most of the correctly predicted boundaries fell within 30-40
ms of their respective reference label. The same model ap-
plied to English data performed noticeably worse with regard
to frame-exact matches. However, given a reasonable toler-
ance, performance was close to that on Japanese data, and
within ∼20-30% of the monolingual English system.

The multi-class boundary detector performed with vary-
ing degrees of success on the different break label types. Es-
pecially labels very rarely seen in the data proved difficult to
detect. As for cross-lingual multi-class detection, the system
trained on a large amount of Japanese data performed bet-
ter with regard to more subtle break types (1, 2), while the
monolingual system trained on little English data performed

better detecting type 3 breaks. Although this may be caused
by the limited amount of training data available in the BRC
(∼65 minutes) compared to the CSJ (∼37 hours), it never-
theless shows that the fundamental approach of cross-lingual
prosodic boundary detection is valid, and can be applied to
situations where sufficient data to train monolingual models
is not available.

Figure 1 shows a visualization of reference and cross-
lingually generated ToBI labels for English speech using the
speech analysis tool Praat.

Fig. 1. ToBI break labels for English. (a) speech signal, (b)
spectrogram, (c) reference labels, (d) cross-lingual labels

We can see that the first four type 1 reference labels are
correctly identified, although the system places them slightly
earlier than the human annotator did. The final type 3 label is
also correctly detected, with the system placing it a short time
after the reference. It is also apparent that the system tends
to produce labels where the reference does not feature them
at all, leading to the reduced precision scores we have seen
earlier.

6. CONCLUSION AND FUTURE WORK

In this paper we have attempted to use neural networks in
cross-lingual application in order to predict prosodic bound-
aries on a language not seen in training. We have shown that
the chosen model does retain much of its predictive power
in cross-lingual application. If we can improve the overall
system, we would expect an increase in monolingual perfor-
mance to carry over to cross-lingual application.

Feature extraction may be a point at which improve-
ments could be possible, e.g. by using more prosody-specific
features. We may also be able to expand our approach to
ToBI-style intonation labels, making for a complete auto-
matic ToBI-labelling system for Japanese and potentially
cross-lingual application. The main goal remains to use the
generated prosodic information to improve the results of word
segmentation algorithms to aid automatic lexical discovery.
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