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ABSTRACT 
 
A variety of evaluation measures are being used to validate 
systems in depression prediction and affective computing. Among 
them, the most common measures focus on the error between the 
ground truth and predictions. However, when the ground truth is 
ordinal such as in psychiatric scores, ranking information is more 
important than the actual error. Therefore, this study systematically 
analyses the properties of classification, error-based and ranking 
measures particularly using classification accuracy, root mean 
square error (RMSE) and Spearman rank correlation coefficient, 
with the aim of identifying suitable measures for evaluating 
depression prediction and affective computing. For the purpose of 
analysis, we employed both synthetic data and real depression 
prediction systems evaluated with the AVEC2017 depression 
corpus. Outcomes of the experiments suggest that RMSE and 
classification accuracy, which are frequently used, are not sensitive 
to ordering and that rank correlation measures are more appropriate 
for depression prediction, which is an ordinal problem. 
 

Index Terms— evaluation measures, ordinal regression, 
depression prediction, affective computing 

 
1. INTRODUCTION 

 
Depression is one of a number of mental disorders that collectively 
impose a high socio-economic burden on individuals. The cost of 
depression not only includes medical expenses but also the cost 
due to reduced working capacity and sometimes loss of life. Like 
many subjectively assessed quantities, depression severity is 
indicated using scales (such as PHQ-8 [1], BDI-II [2]), which are 
typically clinician-rated or self-rated. These scales are ordinal in 
nature, rather than numerical or categorical, because a depression 
score of 4 does not indicate double the severity of a score of 2 [3]. 
In this respect, representation of depression severity is similar to a 
great many other quantities in behavioural and affective 
computing, for example arousal, valence, dominance, cognitive 
load, level of interest, stress, anger etc. 

Evaluation is an integral step in the development process for 
understanding the validity of classification and prediction systems. 
Numerous evaluation measures can be found in the literature for 
depression prediction. These measures can be categorized into 
three groups: classification, regression and ranking measures. By 
far the most commonly used measures in the field are from the 
former two groups, while less attention has been paid to ordinal 
performance evaluation. Each evaluation measure has its own 
strengths and weaknesses. Using inappropriate evaluation measures 
could result in poor system design choices, and therefore should be 

chosen with a full understanding of what information can be 
reflected about the underlying problem [4, 5].  

With a view to guiding the choice of evaluation measures, this 
paper investigates the properties of evaluation measures for 
classification, regression and ordinal regression problems, with a 
particular focus on speech-based depression assessment because it 
has been evaluated in multiple different ways to date. 

 
2. RELATION TO PRIOR WORK 

 
Given the ordinal structure of the depression prediction problem, 
ordinal regression, also referred to as ordinal classification, is 
defined for dependent variables with ordered sequences. Define an 
input feature vector ݔ௜ ∈ ܺ and dependent variable ݕ௜ ∈ ܻ, with 
ܻ ൌ ሼݕଵ ≺ ଶݕ ≺ ⋯ ≺  ௄ሽ, where K is the maximum value in theݕ
target scale.  The goal in ordinal regression is to learn a mapping 
function ݂: ܺ → ܻ. Machine learning provides several models for 
the problem of ordinal regression including ordinal logistic 
regression [6, 7], support vector ordinal regression [8, 9], ordinal 
Gaussian processes [10], ordinal KDA [11] and preference learning 
based ranking models (e.g. RankSVM [12], deep neural network 
models [13, 14]). There is an emerging tendency towards ordinal 
regression in affective computing considering the ordinal nature of 
the data [15-17]. However ordinal regression modelling is out of 
the scope of this paper. An overview of evaluation measures found 
in depression prediction and affective computing is presented 
below. 

The most common evaluation measure for classification is 
accuracy. In the literature, it is computed in one of three ways: (i) 
as the average of per class accuracy, also termed macro-average (ii) 
as the mean of accumulated true positives (micro-average) [4] (iii) 
Average Weighted Accuracy (AWA): average accuracy weighted by 
class size. Unweighted Average Recall (UAR) is an extension of 
binary recall for multiclass classification and has been used in both 
depression prediction and affective computing [18, 19]: 

ܴܣܷ  ൌ
∑ ௥௘௖௔௟௟೔
಴
೔సభ

஼
, (1) 

where C is the total number of classes. The kappa statistic [20] is a 
measure of inter-observer reliability and is given by: 

 ݇ ൌ ௢ܲ െ ௘ܲ

1 െ ௘ܲ
 (2) 

Kappa depends on two parameters: observed agreement ௢ܲ and 
expected agreement ௘ܲ. k = 0 is interpreted as chance agreement 
and positive and negative values indicate better and poorer than 
chance agreement respectively. In [21], kappa has been used to 
evaluate 3-class depression classification. The main limitation in 
using the above-mentioned classification measures for ordinal 
regression is their insensitivity to ordering. Classification measures 
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penalize all misclassifications equally, however measures for 
ordinal regression should be able to quantify the severity of the 
error. Weighted kappa [22] addresses this limitation by introducing 
weights proportional to the degree of disagreement. The weights 
influence the final measure, however deciding on the weights is not 
straightforward [23] since the metric distance is not defined in 
ordinal regression. 

In regression measures, error is often calculated based on 
numerical distance. Two popular measures are Mean Squared 
Error (MSE) and Mean Absolute Error (MAE): 

ܧܵܯ  ൌ
1
ܰ
෍ ሺݕ௜ െ ො௜ሻଶݕ

ே

௜ୀଵ
 (3) 

ܧܣܯ  ൌ
1
ܰ
෍|ݕ௜ െ |ො௜ݕ
ே

௜ୀଵ

 (4) 

where ݕ௜ and ݕො௜ are the ground truth and predicted values for the ith 
input vector and N is the size of the test sample. To date, RMSE 
(Root MSE) and MAE are the basic evaluation measures in 
depression prediction [24] even though the metric distance between 
depression scores is meaningless. In [25], authors propose macro-
averaged measures for ordinal regression. Macro-averaging helps 
to compensate for the bias due to data imbalance. Nevertheless, the 
above error-based measures are limited by their scale dependence: 
MAE and RMSE have the same units as the dependent variable, 
hence comparison across problems with different scales is not 
feasible. Furthermore, there is no absolute standard for a good 
measure value; comparison with a baseline is always necessary. 
Normalizing would resolve the above issues to some extent, e.g. 
Normalized RMSE [26], however NRMSE is not in common use in 
affective computing. 

Correlation coefficients are used to assess the strength and 
direction of associations between pairs of variables and have also 
been used as measures to compare ground truth and predicted 
values. Unlike error-based measures, they are bounded within [-1, 
+1]. The most widely used correlation measure is Pearson 
Correlation Coefficient or Pearson’s r: 

ݎ  ൌ
∑ ሺݕ௜ െ ො௜ݕ௒ሻሺߤ െ ௒෠ሻߤ
ே
௜ୀଵ

ඥ∑ ሺݕ௜ െ ௒ሻଶ௡ߤ
௜ୀଵ ඥ∑ ሺݕො௜ െ ௒෠ሻଶߤ

௡
௜ୀଵ

 (5) 

where ߤ௒ and ߤ௒෠  denote the means of ground truth and predictions. 
Pearson’s r is defined for continuous, normally distributed 
variables and based on the assumption that the relationship among 
variables is linear. Concordance Correlation Coefficient (CCC) is 
normalized Pearson’s r with the mean and variance of the two 
variables to penalize bias and scale variance between variables 
[27], and has often been employed for continuous emotion 
prediction: 

ܥܥܥ  ൌ
௒෠ߪ௒ߪݎ2

௒ଶߪ ൅ ௒෠ଶߪ ൅ ሺߤ௒ െ ௒෠ሻଶߤ
 (6) 

where ߤ௒, ௒෠ߤ ௒ andߪ , ௒෠ߪ  represent the means and standard 
deviations of ground truth ሺܻሻ and predictions ሺ ෠ܻሻ. Spearman’s 
Rank Correlation Coefficient (Spearman’s rho) and Kendall Rank 
Correlation Coefficient (Kendall’s Tau) [28] are rank correlation 
metrics, which are non-parametric and applicable to ordinal data. 
Furthermore, rank correlations are bias invariant, monotone 
invariant [29] and are robust to outliers [30]. Spearman’s rho is the 
most widely used, and is based on ranking deviations (d):  

ߩ  ൌ 1 െ ቆ
6∑ ݀ଶே

௜ୀଵ

ܰሺܰଶ െ 1ሻ
ቇ (7) 

Spearman’s rho frequently appears in the depression literature as a 
measurement of association between symptoms and depression 
scores [31, 32]. The expression for Kendall’s tau is:  

 ߬ ൌ
ߛ2

ܰሺܰ െ 1ሻ
 (8) 

where ߛ is the difference between the number of concordant and 
discordant pairs. A pair of instances is considered to be concordant 
only if predicted labels are in the same order with respect to ground 
truth labels, i.e.: ݕ௜ ൐ ௝ݕ ∧ ො௜ݕ ൐ ௜ݕ ො௝ orݕ ൏ ௝ݕ ∧ ො௜ݕ ൏  ො௝. Sinceݕ
Kendall’s tau is related to ranking order, it is more interpretable 
than Spearman’s rho. Spearman’s rho and Kendall’s tau have been 
proposed to process ordinal labels in affective computing [33]. 
Apart from the above ranking measures, in [16] precision@k  has 
been adapted for emotion recognition. 
 

3. EVALUATION MEASURES IN SIMULATION 
 
To test the appropriateness of the evaluation measures from 
Section 2 for ordinal problems, we conducted a series of 
experiments. To begin with we assessed chance-level system 
performance. This first experiment was motivational in nature: we 
took the AVEC2017 development dataset and computed (i) the 
chance-level RMSE for prediction (forcing the predictor output to 
the same PHQ-8 value for every test instance) and (ii) the chance-
level accuracy for 5-class severity classification (forcing the 
classifier output to the same severity score value for every test 
instance). Depression categories were formed based on the 
definition of the PHQ-8 scale. Surprisingly, the lowest chance-
level RMSE was 6.51, which is lower than the baseline result 
(6.74) for the database. Similarly, the highest classification 
accuracy (49%) was quite high for 5-class classification. Fig. 1 
thus attests to the fact that rank information can be completely non-
existent and yet RMSE or classification accuracy may appear 
competitive.  

To probe this further, we observed the behaviour of rank 
correlations, this time under constant RMSE. We generated two 
random signals representing ݕ௜ and ݕො௜. Both signals were passed 
through a low pass filter with a cutoff frequency that was varied to 
modify the correlation between them. The RMSE between the 
signals was held constant by varying the filter gain while keeping 
the filter energy constant. Results are depicted in Fig. 2. The 
variation in Spearman’s rho values demonstrates that RMSE is 
blind to correlation information, unlike ranking measures. 

 
Fig. 1: (a) Chance-level prediction RMSE at each PHQ-8 score (b) 
chance-level 5-class classification accuracy (CA) at each PHQ-8 
severity level for AVEC2017 development dataset. 
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The next experiment was designed to analyse the performance 
of both RMSE and Spearman’s rho with variation in correlation 
and bias. Without loss of generality, a baseline signal ݕ௜ (ground 
truth) was generated as an average of multiple random signals of 
the same length (1000 samples). A test signal ݕො௜ (predictions) was 
generated by low pass filtering the baseline signal and then adding 
an offset in the range [0, 5]. Unlike in previous experiment, 
decorrelation of the two signals was systematically increased by 
passing only the test signal through the low pass filter. The 
association between the two signals under different correlation 
effects (cutoff frequencies) and bias conditions (offsets) is 
presented in Fig. 3. 

RMSE can be seen to monotonically increase with bias, 
whereas Spearman’s rho is invariant to bias. Similar behaviour can 
be expected from both measures with monotone invariance, though 
it is not included in this study. Depression scores are indicative of 
relative order and their numerical values do not contain any other 
information. Therefore, bias invariance and monotone invariance 
are not critical as long as the correct ordering is preserved. On the 
other hand, since depression scores are upper and lower bounded, 
bias cannot exist with perfect positive correlation. RMSE appeared 
to have a non-injective relationship with correlation (controlled by 
LPF cutoff). Therefore, the same RMSE value can represent both 
high and low correlation and lower RMSE can be observed even 
when the signals have been designed with minimal correlation. 
These observations confirm the result from Fig. 2 that RMSE is 
insensitive to ordering information. 

Finally, we compared classification accuracy against 
Spearman’s rho to check whether classification accuracy is also 
inconsistent with ordering information. Herein, classification 
accuracy refers to micro-averaged accuracy. Ground truth labels 

were generated to simulate a uniformly distributed 5-class normal / 
mild / moderate / mod severe / severe classification problem under 
different severities of category swap errors. Classification accuracy 
and Spearman’s rho were estimated under different error severity 
levels (Fig. 4). Classification accuracy clearly lacks ordering 
information, for example an accuracy of 36% can be observed at 
every error severity level. Classification accuracy is capable of 
identifying the existence of an error, but is less interpretable 
beyond that. In contrast, Spearman’s rho shows monotonic 
negative correlation with error severity indicating its sensitivity to 
error magnitude. 

 

4. EVALUATION MEASURES ON REAL 
DEPRESSION DATA 

 
The preceding experiments were designed to provide insight into 
the properties of RMSE, classification accuracy and Spearman’s 
rho for ordinal problems like depression prediction. However, it is 
most important to understand their behaviour on real depression 
data. For all experiments in this section, we used the AVEC2017 
[24] dataset: models were trained using the training partition and 
tested on the development partition, unless otherwise stated.  
 

We performed cross-validation on the AVEC2017 dataset 
(training + development partitions), with a train-test split of 70:30. 
Different correlation values ranging from negative to postive can 
be observed for similar RMSE values (red colour band). 
Furthermore, different RMSE values can be observed with similar 
correlations (green colour band). Analogous observations can be 
made for the classification accuracy. These observations 
collectively agree with our results from synthetic data in Section 3: 
RMSE and classification accuracy both lack interpretability in 
terms of sensitivity to ranking information. 

Fig. 6 presents the RMSE and Spearman’s rho of multiple 
depression prediction systems. Note that the objective of this 
experiment was not to compare depression models but evaluation 

 
Fig 2: (a) Behaviour of Spearman’s rho under constant RMSE. 
Cutoff frequency is in the range (10-4,1) where 1 corresponds to 
Nyquist frequency. (b) and (c) show the signals at cutoff 
frequencies of 10-4 (high correlation) and 1 (low correlation). 

 
 
Fig. 3: Surface plot of (a) RMSE (b) Spearman’s rho under 
varying cutoff-frequency and offset.  

 
Fig. 4: Boxplot of (a) 5-class classification accuracy and (b) 
Spearman’s rho as a function of error severity. Error severity 
represents the maximum allowed swap error (errors of 1 imply 
only adjacent category swaps). 

 
Fig. 5: Individual fold results for cross-validation on the 
AVEC2017 baseline system: (a) Random forest regressor with 
COVAREP features [34] (b) Random forest classifier with 
COVAREP features. 
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measures, therefore default configurations were used when training 
the models. If RMSE were interchangeable with a ranking 
measure, then all points should occur on a monotonically 
decreasing line in Fig. 6. However, instead there are some major 
deviations, e.g. IS13+RFR and MFCC+GSR1 are not too different 
in RMSE but exhibit radically different correlation results. 

In this study, classification accuracy, RMSE and Spearman’s 
rho were used as representative measures of classification, 
regression and ranking measures respectively. Tables 1 and 2 
present the correlations between all pairs of evaluation measures 
introduced in Section 2. The system used in these experiments was 
a DCNN with IS13 features. The architecture of the DCNN was the 
same as the system presented in [35].  To calculate multiple results 
from each evaluation measure, we considered all the combinations 
for 31-speaker subsets of the total 35 speakers in the development 
partition. Table 2 reports the results from 5-class classification. 

Table 1: Pearson Correlation Coefficient between pairs of 
evaluation measures for regression. PCC = Pearson CC, SR = 
Spearman’s rho, KT = Kendall’s Tau. 

 RMSE NRMSE MAE PCC SR KT 
RMSE 1 1 0.96 0.07 0 0 
NRMSE 1 1 0.96 0.07 0 0 
MAE 0.96 0.96 1 -0.01 -0.05 -0.04 
PCC 0.07 0.07 -0.01 1 0.85 0.87 
SR 0 0 -0.05 0.85 1 0.99 
KT 0 0 -0.04 0.87 0.99 1 

 
Neither RMSE, NRMSE nor MAE have an association with 

rank correlation measures. The insensitivity of these measures to 
ordering information may be the reason for this weak association 
(Fig 2). Pearson CC has a strong relationship with rank 
correlations, but it is not as strong as the association between 
Kendall’s Tau and Spearman’s Rho. Nevertheless, Pearson is a 
metric measure and not recommended for ordinal regression. 
Spearman’s rho and Kendall’s tau have similar underlying 
assumptions, therefore, very strong correlations can be observed. 

Table 2: Pearson Correlation Coefficient between pairs of 
evaluation measures for classification. CA = Classification 
accuracy, WK = Weighted Kappa with linear weights 

 CA UAR Kappa WK SR KT 
CA 1 0.7 0.68 0.69 0.53 0.52 
UAR 0.7 1 0.74 0.57 0.31 0.3 
Kappa 0.68 0.74 1 0.87 0.63 0.62 
WK 0.69 0.57 0.87 1 0.92 0.91 
SR 0.53 0.31 0.63 0.92 1 1 
KT 0.52 0.3 0.62 0.91 1 1 

 
Unlike classification accuracy and UAR, kappa and weighted 

kappa have a stronger association with rank correlations. Weighted 
kappa is equivalent to Pearson CC under certain conditions [22]. 
Therefore, a strong association can be expected. 
 

5. CONCLUSION 
 
This paper presents an overview of evaluation measures reported in 
depression prediction and affective computing literature to assess 
or select the best model for the problem. It is evident that each of 
these measures reflects an incomplete view of the actual error [5]. 
Therefore, selection of an evaluation measure must adhere to the 
expectations of the problem otherwise it is possible to end up with 
a non-optimal model. 

Error-based measures (e.g. RMSE) are only lower bounded 
and hence without a baseline, their values have little meaning. 
Furthermore, error-based measures do not facilitate comparisons 
between depression corpora that have been labelled with different 
assessment scales. This is critical in depression and some other 
areas of affective computing, because databases have been labelled 
using different scales. 

Based on experiments presented for synthetic data, the 
following two conclusions can be made: (i) both RMSE and 
classification accuracy are blind to ranking information. (ii) rank 
correlation measures are bias and monotone invariant. Bias and 
monotone invariance are not critical factors for psychiatric ratings. 
However, insensitivity to ranking information could lead to poor or 
incorrect model selection. In depression severity assessment, even 
when the error is low, if the correct ordering doesn’t exist, it is hard 
to accept that model as a “good” model. In contrast, a model with 
high correlation but poor RMSE might still be acceptable, because 
of the ordinal nature of depression scores. 

Using ranking measures for ordinal labels is not claimed as a 
novel [33]. Ordinal measures (including ranking measures) are the 
correct practise for ordinal data. However, until recently, ordering 
information has been quite widely ignored when evaluating 
models.  Therefore, this work has highlighted the pitfalls of 
existing approaches and suggested that more elegant methods can 
be found in the ranking domain. These results provide 
encouragement to consider the careful choice of evaluation 
measures not only for automatic depression assessment systems, 
but for all types of affective computing problems for which the 
subjective ground truth is essentially ordinal in nature. 
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Fig. 6: Scatter plot of RMSE and Spearman’s rho for multiple
depression prediction systems. IS13: Interspeech 2013 feature set.
SVR: Support Vector Regression. RFR: Random Forest Regressor.
Supvec16 and Supvec32: GMM supervectors with 16 and 32
mixtures. DCNN(10) and DCNN(1000): Deep Convolutional
Neural Network with 10 and 1000 epochs. GSR: Gaussian
Staircase Regression (GSR1 and GSR2 have different partitioning
in feature space). 
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