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ABSTRACT

This paper proposes a referential vowel duration ratio for a
pair of vowels in consecutive syllables and a weighted mean
of the referential vowel duration ratios on a logarithmic scale
as a feature for automatic assessment of second-language
(L2) word prosody. In addition to contours of fundamental
frequency (FO) and energy i.e. suprasegmental information
of speech, segmental duration of syllables or phonemes pro-
vides important information for assessing L2 prosody. For
L2 learners, the first step of learning prosody is to put ac-
cents or stresses on appropriate syllables in words. A syllable
with a stress should be produced longer and one without a
stress should be produced shorter. To achieve this, we pro-
pose taking a duration ratio for every pair of consecutive
vowels in reference to duration contrast of the same vowel
pair produced by native speakers. Furthermore, we propose a
weighted mean of the ratios on a logarithmic scale in consid-
eration of local importance within a word. In evaluation with
English word utterances produced by Japanese learners, the
introduction of the weighted mean of the ratio significantly
improved the correlation coefficient with subjective scores.

Index Terms— duration, prosody assessment, L2 speech

1. INTRODUCTION

Prosody, which refers to aspects of speech related to into-
nation, stress and rhythm, is an essential part of learning a
language. Computer assisted pronunciation training (CAPT)
systems have been developed to provide language learners an
environment to self-train speech production. Although most
of the technology developed for CAPT focused on pronuncia-
tion of phoneme segments, attention must be paid to learners’
prosody as well.

A basic approach to automatic prosody assessment is
comparing learners’ read-aloud utterances with natives’ ref-
erence utterances of the same text. Recently, an automatic
assessment method with prominence estimates of syllables
obtained by continuous wavelet analysis was proposed [1].
Another study compared tones and break indices (ToBI labels
[2]) labeled at both learners’ and natives’ utterances with
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mutual information [3]. Many studies have compared con-
tours of FO and energy [4, 5, 6]. Arias et al. proposed an
automatic stress assessment as well as an automatic intona-
tion assessment based on a correlation between a learner’s
and a reference contours with dynamic time warping (DTW)
alignment [5]. They got a high subjective-objective score
correlation (r = 0.88). Cheng proposed direct compar-
ison of a normalized FO or energy contour of a learner’s
utterance with multiple reference contours and evaluated the
method with real L2 assessment data collected in a large-
scale English read-aloud test [6]. The method achieved a
subjective-objective correlation (r = 0.80) higher than the
correlation between human raters (r = 0.75). Motivated by
Cheng’s study, we proposed an improved contour comparison
method with a weighted distance that put more weight on a
frame-level distance around high values of a reference FO
or intensity contour and with variable number of references
reflecting the diversity of native utterance contours [7].

However, segmental duration of syllables or vowels has
not been exploited as much as FO and energy contours in
these reference-based methods. Although the segmental du-
ration provides a primary cue in various linguistic distinctions
in English [8], fewer studies have made use of this. Cheng’s
method trained a statistical duration model of each phoneme
in context with density functions. Such a statistical approach
should work well in an environment where sufficient training
samples are available. However, that statistical model did not
model the contrast of long and short duration of stressed and
unstressed syllables explicitly.

In measuring speech rhythm, Grabe et al. proposed Pair-
wise Variability Index (PVI) based on the duration of consec-
utive vowels or consonants [9]. PVI has been widely used as a
metric for quantifying rhythm in speech, and there have been
some studies that applied PVI to assessing L2 speech, such
as assessing a proficiency level [10, 11], predicting a level of
prosodic control using feature selection and linear regression
of a number of prosodic features that included PVI [12] and
classifying native and non-native speech with an optimized
PVI [13]. However, PVI does not consider correctness of
the contrast between long and short syllables. On the other
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hand, the first step of learning second language speech is to
put stresses on appropriate syllables in words.

Therefore, we propose a vowel duration ratio in refer-
ence to the magnitude relation of duration between two vow-
els in the consecutive syllables produced by native speakers.
The referential vowel duration ratio captures how correctly
a learner distinguishes stressed and unstressed syllables in
vowel duration. Furthermore, we propose a weighted mean
of the referential vowel duration ratios on a logarithmic scale
considering the local importance within a word.

2. REFERENTIAL VOWEL DURATION RATIO

2.1. Referential vowel duration ratio of vowel pair

Alternation between long and short syllables, corresponding
with stressed and unstressed syllables, constitutes the rhythm
of stress-timed languages. A vowel duration ratio is calcu-
lated on a pair of consecutive syllable nuclei to score how
correctly a speaker distinguishes the stressed and unstressed
syllables regardless of the speech rate. The numerator and de-
nominator of the vowel duration ratio switches according to
the magnitude relation of durations between the two vowels in
a native reference utterance of the same word so that a good
contrast of long and short syllables results in a ratio greater
than 1. The referential vowel duration ratio r(z) for a pair of
the sth and its following vowels is defined as:
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where dl(-R) and d§L2) denote duration of the ith vowel seg-
ment in an utterance of a same text by a native reference
speaker and a non-native speaker to assess, respectively. If

the ratio is below 1, the non-native speaker is likely to have
misplaced the long and the short syllables of the pair.

To get the ratios, each native and non-native utterance
is forced aligned at the phoneme level using an automatic
speech recognition (ASR) engine, and durations of phonemes
corresponding to vowels are extracted. Each vowel in a word
is paired with a vowel in its following syllable. Note, how-
ever, that a vowel in the last syllable of a word is excluded
from the computation of the ratio if the vowel is the last phone
of the word. The reason is that the last vowel of a word tends
to be longer than the others regardless of whether or not it is
supposed to be stressed when there is no following sound to
close the last vowel. Then, the ratios are first calculated on
native utterances to determine which of the pair becomes the
numerator and which becomes the denominator.

2.2. Weighted mean of logarithmic ratios

An automatic score S(4%") related to vowel duration is com-
puted based on the ratios of all the consecutive vowel pairs so
that the score has a high correlation with a subjective score.
Since the referential vowel duration ratios are distributed in
a log-normal distribution, we take a geometric mean G of all
ratios in a word on a logarithmic scale, that is an arithmetic
mean of the logarithmic ratios:
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where M denotes the number of vowels in an utterance.
Considering the correlation with a subjective score, it is
reasonable to put more weight on the ratio of a pair which
includes a stressed vowel than that of a pair which does not.
Although the effect of the local importance on the subjective
score should have non-linearity, we assume a linear weight in
reference to the logarithmic vowel duration ratio of a native
reference. Let the logarithmic vowel duration ratio of a native
reference be a weight, and the equation (2) is extended as:
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Then, the weighted mean G is scaled up to a score
S(dur) which ranges from 1 to 5 by linear interpolation:
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where G% ... and G . denote the maximal and minimal val-

ues of the mean. Sf,f;‘; ) and S\ are 1 and 5, respectively.

The referential vowel duration ratio is able to capture if a
stressed vowel is produced longer than an unstressed vowel.
However, it is not a simple question if the ratio can evalu-
ate vowel insertion into consonant clusters when a canonical
phoneme sequence is given for forced alignment. The refer-
ential vowel duration ratio is considered complementary with
the FO and energy contour comparison. Hence, the weighted
mean of the logarithmic ratio is evaluated in combination with
the improved contour comparison framework proposed in [7],
which will be described in the next section.
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3. AUTOMATIC ASSESSMENT OF L2 PROSODY
WITH CONTOUR COMPARISON

The FO and intensity contour comparison and the referential
vowel duration ratio are consistent in the sense of “reference-
based” methods. Here, the improved contour comparison
framework is reviewed, followed by score integration.

3.1. Feature extraction of F0 and intensity

FO and intensity are measured and NV, equally-spaced points
are extracted from the measurement to normalize the duration
of utterances for comparing the contours. All features are z-
normalized to reduce the natural variations between speakers,
then further normalized by a sigmoid function to smooth the
outliers around high values. We set [V, at 25 and the prosodic
contour is denoted as U, such that U = (u(1),...,u(N¢)) is
the concatenation of the /V; normalized prosodic values.

3.2. Weighted distance

The normalized prosodic contour of a non-native utterance
is compared to that of a reference by measuring a distance
between NN, sampled points. In the distance calculation, a
“weighted distance” that puts more weight on the squared er-
ror between a reference and a non-native contour around high
values of the reference contour is used. The weighted distance
D™ between a sigmoid-normalized reference contour U,. and
a non-native one Uy, for a given word is then defined as:

Ny
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where D" (u,.(t), ur2(t)) denotes the weighted squared error
between u,(t) and ura(t), the tth feature value of the refer-
ence and non-native contour, respectively.

3.3. Variable number of references

The FO and intensity contours of a word are not unique, but
they have a considerable variability among native speakers.
The method sets a different number of references for each
word depending on the variability in the whole set of native
contours. The number of references should be appropriate
enough to avoid redundancy between the references. The
variability among native utterances is measured as:
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where Ur(z) is the 7th contour in the total set of n utterances.

Then, the number of clusters k& for k-means clustering of
the native utterances is linearly set in the range between 1 and
half the number of the native utterances.

Table 1. List of English words for assessment

accessory electric academician
kangaroo electronic  epistemology
technology  desert differentiate
escalator pattern intercommunicate
dessert control totalitarian
percent economic inferiority
spaghetti gorilla theatricality
volunteer orchestra instrumental
penalty cigarette geology
influenza millionaire  geological
delicate dialect computer
democracy innovation computation

When measuring a weighted distance in contour compari-
son, each Uy, is compared to the centroid Ur(j ) (1<j<k)of
each cluster, and the smallest distance D™ is kept to calculate
the automatic score.

3.4. Automatic scores and their integration

An automatic score S(F0) (resp. S"!)) ranging from 1 to 5
is given by a linear function of D¥(U,., Ur2). The final au-
tomatic score S is given by an arithmetic mean of the scores,
S(FO), S(z’nt) and S(dur).

4. EXPERIMENTS

4.1. Data

We conducted experiments on 910 utterances of isolated En-
glish words produced by Japanese learners of English from
English Read by Japanese (ERJ) corpus [14]. This non-native
data set consists of 36 words with different numbers of sylla-
bles and various stress patterns, The words are listed in Table
1. The 910 utterances were produced by 160 Japanese univer-
sity students, 79 female and 81 male.

The prosodic quality of the utterances was assessed by
two native American English teachers who had to evaluate
speakers on a scale of 1 (“very poor”) to 5 (“excellent”).
Overall, the subjective score correlation (the correlation be-
tween the native raters) equaled 0.480. The low correlation
can be accounted for by the fact that there were only two hu-
man raters, the rating was made on the word basis and there
was a relatively small number of utterances per word. As a
result, the subjective score correlation was degraded by small
variations in human ratings. This correlation coefficient of
the native raters is nonetheless considered a target value of
subjective-objective score correlations.

We built a native data set by recording native utterances
of the 36 words from online English dictionaries [15, 16, 17,
18, 19, 20]. From 4 to 19 native utterances with an average
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Table 2. Subjective-objective score correlations

Method FO Int. Dur. | Corr.
Baseline #1 . ° 0.265
Baseline #2 ° ° 0.304
n-PVI . 0.005
Baseline #2 + n-PVI . ° . 0.303
Arithmetic mean of log ratios ° 0.191
Baseline #2 + arithmetic mean | o ° ) 0.346
Weighted mean of log ratios ° 0.266
Baseline #2 + weighted mean ° ° ° 0.381

of 14 utterances were collected for each word depending on
the availability of native utterances online. There were speak-
ers with various English accents such as Australian, Irish, Ja-
maican, Scottish, UK, UK Received Pronunciation, UK York-
shire, US and US Southern.

We conducted phoneme-level forced alignment of the
non-native and native utterances with canonical phoneme
sequences in the CMU pronunciation dictionary using Kaldi
ASR engine. However, this time we used manually-corrected
phoneme segmentation for computing vowel duration ratios
to eliminate the degradation by alignment errors.

4.2. Experimental conditions

We compared the proposed methods in a subjective-objective
correlation, which was a correlation coefficient between the
mean of two subjective scores by human raters and the auto-
matic score. Five types of methods were compared. Base-
line #1 was the basic contour comparison of FO and inten-
sity based on Euclidean distance with a fixed number of ref-
erences. The number of references was fixed at 4 here. Base-
line #2 refers to the improved contour comparison method
described in Section 3. As a feature related to vowel dura-
tion, three types of scores were evaluated in combination with
Baseline #2. The first one was the normalized Pairwise Vari-
ability Index (n-PVI) [9] and the second one was the score
based on the arithmetic mean of logarithmic vowel duration
ratios G. The third one was the score based on the weighted
mean of logarithmic vowel duration ratios G.

4.3. Experimental results

Table 2 summarizes the subjective-objective correlations. Be-
tween the two baseline methods, introduction of the weighted
distance and variable number of references improved the
correlation coefficient from 0.265 to 0.304 at Baseline #2.
There was no correlation between the n-PVI and the subjec-
tive score. In contrast, incorporating the arithmetic mean of
referential vowel duration ratios to Baseline #2 significantly
improved the correlation coefficient from 0.304 to 0.346,
although the arithmetic mean itself could not sufficiently pre-
dict the subjective score. The weighted mean of the vowel
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Fig. 1. Scatter graph of 910 isolated English word utterances
produced by Japanese learners. The horizontal and vertical
axes represent the mean subjective score of two human raters
and the weighted mean of referential vowel duration ratio G*
on a logarithmic scale. The correlation coefficient is 0.266.

duration ratio in reference to those of native references further
improved the subjective-objective correlation to 0.381.

Fig. 1 shows the scatter graph of all the samples of the
mean subjective score of two human raters and the weighted
mean of the referential vowel duration ratio G*. The cor-
relation coefficient was 0.266. As a comparison, the overall
correlation of two subjective scores was 0.480.

5. CONCLUSIONS

This paper presented a referential vowel duration ratio and its
weighted mean on the logarithmic scale as a feature for au-
tomatic assessment of L2 word prosody. Incorporating the
weighted mean of the logarithmic ratio into an existing au-
tomatic prosody assessment framework based on FO and in-
tensity contour comparison greatly improved the subjective-
objective correlation in an experiment with English word ut-
terances produced by Japanese learners of English.

In future work, we will evaluate the effectiveness of the
referential vowel duration ratio with other L2 English corpora
spoken by speakers whose mother language is not Japanese,
and with words in read-aloud sentence utterances.
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