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ABSTRACT

Dubbing contributes to a larger international distribution of multi-
media documents. It aims to replace the original voice in a source
language by a new one in a target language. For now, the target voice
selection procedure, called voice casting, is manually performed by
human experts. This selection is not exclusively based on acous-
tic similarity between the two voices. Actually, it is also supported
by more subjective criteria such as the ”color” of the voice, socio-
cultural choices. . . The objective of this work is to model a voice
similarity metric able to embed all the concerned voice character-
istics, including the observers’ receptive interests. In this paper,
we propose a Siamese Neural Networks-based approach, measuring
proximity between the original and dubbed voices. We propose an
adapted jackknifing cross-validation method to evaluate our similar-
ity model on unseen voices. The results show that we successfully
capture information allowing two voices to be associated, with re-
spect to the character’s or role’s abstract dimension.

Index Terms— Voice casting, Similarity metric, Siamese net-
works, i-vector

1. INTRODUCTION

The voice is an important medium in various multimedia documents,
allowing for example an immersion of the spectators in cultural
works (e.g. movies, video games). For international distribution,
companies need to adapt the voices to reach the widest possible au-
dience. Subtitling is the simpler and cheaper option, but not the
most practical one for spectators: a large audience is more comfort-
able with hearing speech, in general in his mother tongue, rather than
reading subtitles and at the same time hearing speech in another lan-
guage. The localization process requires the original voices to be
replaced by new voices in the target language. This is called dub-
bing or revoicing. It involves a voice selection process, which means
choosing among several candidate voices in a target language with
respect to the source voice. This selection is referred to as voice cast-
ing and it is currently carried out by human operators. The choice
for the target language voice could be simply based on its acous-
tic resemblance with the original one, but it may relies on previous
usages of the target actor’s voice too. We suppose the existence of
stereotypical voices that depends on cultural factors. Sociologists
talk about “reception” to qualify long-term effects involved in the
voice perception process. The point is, artistic directors want to find
a voice that will induce a similar effect according to the target cul-
ture, more than a voice that just sounds like the original one. Voice
casting process suffers from different problems. First, the human
operator is exposed to his subjectivity. In fact, he makes his choice
among the voices he is used to work with. Second, there is a huge
amount of available voices and it is impossible to listen to all of

them. As a consequence, voice selection remains essentially a sub-
jective process which favors already known voices.

Given the difficulty of the voice casting process, automatic rec-
ommendations could help the operator in his quest for new voices.
Thus, we propose a method to evaluate the similarity between two
voices, beyond the simple acoustical level. The classic notion of
voice similarity refers to a phonic comparison, what is usually
sought in the automatic speaker recognition field. Speaker recog-
nition systems [1, 2, 3] are able to measure efficiently the probabil-
ity that two speech extracts were pronounced by the same person or
not. However, the way humans perceive voices as ”similar” is still
an open question. There is a large amount of research work about
perceptual voice similarity that derives from [4]. The author intro-
duces the notion of voice quality, what we understand as auditory
characteristics that color an individual voice. Several works explore
the voice similarity level assessment that we can perceive among a
group of voices [5, 6, 7, 8, 9, 10, 11]. They show the existence of
correlations between particular acoustic characteristics (mainly on
formants) and the way we figure out that two voices are perceptually
similar. However there is no well-established method to automati-
cally estimate this similarity.

The notion of perceptual similarity has been studied on profes-
sional acted voices in [12, 13, 14], presenting different perspectives,
including a speaker recognition-based similarity metric and a para-
linguistic-based classification, in addition to a subjective experiment.
The main challenge here is tied with this notion of similarity, espe-
cially when comparing multilingual voices. For example, an acous-
tically similar voice could be inconsistent to a very different culture
indeed. Given the operator’s choices, we wish to learn this abstract
notion and to capture the expected latent information into the voice
(e.g. voice inflections, rhythm, timbre . . . ).

In order to delve into the role-specific dimension perceived
throughout the voice, we focus on multilingual video games, as
we expect more prototypical characters there than in other multi-
media productions such as movies. We restrain this work to two
languages, where English is the source and French is the target lan-
guage. In [14], we proposed an i-vector/PLDA approach. In this
work, we move to Siamese Neural Networks (SNN) since PLDA
tends to focus on the speaker identity. Additionally, that method
could be understood as a mapping from original to target language
speakers, more than a vocal similarity estimation. Our intuition is
that SNN and the usage of a pair-based learning, are more suitable
to voice similarity estimation taken in its abstract assumption.

This paper is organized as follows. In Section 2, we give de-
tails on our approach. Methodology and experimental protocol are
described in Section 3. Then we present our results in Section 4,
and finally, we make a conclusion and lay down our perspectives for
future work in Section 5.
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Fig. 1. Overview of the automatic voice casting system.

2. PROPOSED APPROACH

In Figure 1, we present a simple illustration of the automatic voice
casting system. It accepts a pair of inputs corresponding to two voice
excerpts. In addition, it gives a single output corresponding to the
similarity between the two voices, beyond the plain acoustic resem-
blance. In other words, this score denotes the ability of the target
voice to replace the original one. What makes the hearth of our sys-
tem is our similarity model which is learnt from a set of voices in
two different languages.

In Section 2.1, we present the concept and our motivation for the
usage of a Siamese architecture, which constitutes the first novelty of
this paper. The input data are represented with i-vectors, succinctly
presented in Section 2.2.

2.1. Siamese Neural Networks (SNN)

Intuitively, this particular neural architecture provides a way to learn
a similarity metric from pairwise relations between two inputs that
share an abstract notion of similarity. The first work using SNN re-
ferred to [15] and takes place in the context of automatic signatures
verification. This kind of architecture involves two identical neural
networks. Thus, it takes two independent inputs that are projected
into a latent space and finally merges them in a final layer by com-
puting a penalty function which is named contrastive loss. Both
networks’ high-level representations are used for the computation of
a distance used in the penalty function, and which is inversely pro-
portional to the similarity between the pair of inputs. What makes
the particular aspect of this architecture is that both networks share
their parameters, allowing a comparison to be made. In this paper,
we use an Euclidean distance.

In this work, we set up a Siamese architecture like in [16, 17, 18].
It promises two things:

– Due to the shared parameters, two strongly similar inputs can-
not be mapped to very different places in the latent represen-
tational space. Conversely, a pair of different inputs cannot
be close.

– The penalty function makes no distinction on inputs order
contained in the processed pair (i. e. similarity function is
symmetric).

In [16], the authors use an energy-based penalty function defined by
the following equation:

EW (I1, I2) = (‖GW (I1)−GW (I2) ‖2)2 (1)

Here, I1 and I2 refer to the inputs. G is a function that performs
a mapping from the inputs space to a new space called the embed-
dings space. This function is parameterized by a matrix denoted W .
By playing with W , the objective is to minimize the energy (Equa-
tion 1) when the two inputs are similar, but it also must verify that
the distance denoted byEW is still large enough for different inputs.

Alternatively, in [19] the authors use a cosine similarity instead of
the Euclidean distance. In our context we do not observe any dif-
ference with other distances, thus we do not use cosine in order to
avoid negative values for convenience. We consider a binary variable
denoted T , such as T = 0 when the inputs are similar and T = 1
otherwise. We also have a positive constant referred as m, that we
can interpret as a margin such as EW (I1, I2) + m < EW (I ′1, I2)
with two similar inputs I1, I2 and where I ′1 is a different input. The
contrastive loss function is defined as follows:

L(I1, I2, T ) = (1− T )× EW (I1, I2)

+ T ×max{0, m− EW (I1, I2)}
(2)

In this paper, we use Convolutional Neural Networks (CNN)
ended by Fully Connected Layers (FCL) in order to compute the G
function. The shared weights allow the twin networks to compute the
same function GW . Furthermore, the final layer units are combined
with an hyperbolic tangent activation function, so output values be-
long to interval [−1, 1]. We give more details in Section 3.3.1 about
the architecture.

2.2. I-vector based input representation

In general, the representational choice of the input data (i. e. au-
dio segments) has a significant impact on the global system perfor-
mance. In order to represent a length variable speech extract, we use
here an i-vector based input representation.

I-vectors have been initially presented in the speaker recogni-
tion domain by [20] and are also used in other tasks (e.g. lan-
guage identification, emotion recognition. . . ). A large amount of
data from many speakers over various sessions and channels are used
to build the total variability space. Audio segments are projected
onto this space and characterized by i-vectors [21]. They contain,
the speaker individual characteristics. This representation can be ex-
tracted from sequences of different possible lengths. More generally,
we see i-vectors as a compact representation of acoustic parameters
sequences.

3. EXPERIMENTAL PROTOCOL

In this section, we first describe the data used for our voice casting
problem (Section 3.1). Then, we detail the sequence extraction in
(Section 3.2) and define our learning protocol in (Section 3.3). Fi-
nally, we propose a protocol in order to evaluate our approach that
mostly focus on the similarity metric quality and on the relevance of
the Siamese architecture (Sections 3.4 and 3.5).

3.1. Corpus

Our experimental data comes from a video-game called Mass Effect
3. The different characters may interact with their voice. The game
was mostly dubbed in several languages, which means we have ac-
cess to the original voice audio segments (here, in English) and their
dubbed versions (only French in our experiments). More than that,
we ensured that each segment from the original version has exactly
one equivalent in the French version. That correspondence allows
us to conduct a pair-based training with the pairs containing both
English and French voices. Our goal consists in learning –such as
the voice casting operator– the right way to automatically gather the
original and dubbed voices.

A character is then defined by two different actors: one speaking
in English and one in French. We ensured that all speakers (actors)
are associated to a maximum of one character, in order to avoid any
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bias. Moreover, we payed attention to characters’ segments distri-
bution, which is not uniformly shaped as it depends on the respec-
tive place of the character. We designed our experimental protocol
in order to reduce this bias as much as possible. Both English and
French sets contain 10, 000 voice segments that are high-quality stu-
dio recorded audio files. The corpus contains a total of 7.5 hours of
speech in each language, and audio segments are 3.5 seconds long
on average.

3.2. Sequences extraction

We transform the audio signal into 60-dimensional features vectors.
It consists in 20 MFCC parameters including log energy, in addition
to the 20 first and second order derivatives (∆ + ∆∆). We com-
pute the parameters on a sliding Hamming window of 20 ms with a
shift sets to 10 ms. We perform a cepstral mean normalization and
we remove the low-energy frames that mainly correspond to silence.
We train a language-independent i-vector system [22] for English on
NIST SRE 2004, 2005 and 2006, and French on ESTER-1, ESTER-
2, EPAC, ETAPE and REPERE. We train a Universal Background
Model (UBM) of 2, 048 components from features vectors. More-
over, we train a total variability matrix T of low-rank 400, allowing
us to extract i-vectors.

3.3. Pairwise learning

Voice segment pairs corresponding to a same character are denoted
target, others are referred as non-target. We select 16 characters
with at least 90 voice segments for both English and French in or-
der to balance the number of target and non-target trials. Thus, we
perform a 4-fold cross-validation, each fold is comprising 4 of these
characters that we keep-out in order to test our hypothesis. We make
sure we pull them out from the training set, so that any memorization
effect is avoided. The four different train and test cases are denoted
A, B, C and D.

Additionally, we presume language and linguistic content could
be seen as possible bias. Since i-vectors are sensitive to duration
which directly results from the linguistic content, we make sure to
avoid pairing an English segment with its direct French equivalent by
randomly shuffling the two sets. To ensure that the i-vector extrac-
tion is reliable we also reject all segments shorter than one second.
Finally, we operate on same gender pairs only, in order to avoid a po-
tential bias related to gender difference. Usually target pairs comply
with this constraint.

Each fold contains a total of 32, 400 target pairs for test by com-
bining 90 random segments in both English and French for each
character. We randomly build the same number of non-target pairs
according to previously stated constraints. This step aims to avoid
the bias related to a priori probabilities of the 2 classes, by bringing
them back to 0.5. We apply the same method to build the four train-
ing sets, except that we split the segments into 80% train and 20%
validation sets. This step is fully randomized too and we operate on
character’s segments instead of pairs to ensure a balanced amount of
voice segments between all characters in both languages. The total
number of pairs available in a training case is 194, 400.

3.3.1. Training

We set up two Convolutional Neural Networks with Keras [23].
The specific network architecture is described in Table 1. We use
a Xavier initialization [24] for weights and a normal initialization
with µ = 0.5 and σ = 0.1 for the bias. Also, we use the Adadelta

Input 400 x 1
10 Conv1D(pad-2, str-2)-32-BatchNorm-LeakyReLU

MaxPooling + Dropout(0.25)
7 Conv1D(pad-2, str-2)-64-BatchNorm-LeakyReLU

MaxPooling + Dropout(0.25)
4 Conv1D(pad-2, str-2)-256-BatchNorm-LeakyReLU

MaxPooling + Dropout(0.25)
4 Conv1D(pad-2, str-2)-256-BatchNorm-LeakyReLU

MaxPooling + Dropout(0.25)
Flatten

Dense-2048-BatchNorm-LeakyReLU + Dropout(0.25)
Dense-256-BatchNorm-Tanh

Table 1. Network architecture.

optimizer with default configuration and dropout plus L2 regulariza-
tion on each layer. Finally, we fix the mini-batch size to 128 trials.
We trained all 4 models during 50 epochs and perform a validation
accuracy based monitoring in order to avoid overfitting.

3.4. Baseline NN configuration

We confront the Siamese Neural Networks to classic architectures.
We use two different neural networks to compare with SNN. In the
first one (called 2in-conc), we concatenate the two inputs of dimen-
sion d into a single 2d input vector. In the second one (named 2in-
merge), we use an embedding layer for each d-dimensional input
vectors, then we merge them into a single layer. We build these two
networks according to Table 1, they just differ on their way of man-
aging inputs, that is to say, concatenated inputs against multi-inputs
model.

3.5. Evaluation

In order to evaluate the reliability of the learned similarity metric, we
refer to the scores obtained on each pair. Here, we use the Euclidean
distance computed in the embedding space as a similarity score. Ac-
cording to the nature of the two groups (target and non-target), we
hope to observe a neat distinction between respective scores. Hence,
it is relevant to perform a statistical hypothesis test: the t-test, also
called Student test. The intuition is to compare the average scores
of the two groups. It is a two-tailed test where the null hypothesis
says the mean score of two classes are equals. This statistic is de-
noted t-score. In addition we also compute pure system performance
evaluation metrics such as accuracy.

4. RESULTS & DISCUSSION

We present our results in Table 2. Considering the SNN architecture
only, accuracy is slightly varying above 0.70% on the four develop-
ment sets. As we expected, results on our different testing sets are
not as good as in development sets. However, we come to a 0.62%
accuracy score (on case C), A and B varying slightly below 0.6%
while D does not perform better than random. This result shows us
the model sensibility to the different characters. We note that t-score
is higher on test than on development set. Since it corresponds to
a ratio between inter and intra variance it means the difference be-
tween target and non-target is more important. We illustrate on Fig-
ure 3 the differences between target and non-target scores. Accord-
ing to target, we see a larger concentration on test which explains the
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Fig. 2. Averaging the 4 cases loss (top) and accuracy (bottom) on
development set after each epoch on the SNN architecture.

2in-conc 2in-merge siamese-net
acc. tscore acc. tscore acc. tscore

A (test) 0.49 ��0.71 0.52 17.66 0.55 52.18
B (test) 0.49 5.34 0.50 4.53 0.59 77.99
C (test) 0.51 7.82 0.53 18.37 0.62 86.17
D (test) 0.53 17.30 0.52 14.50 0.50 ��1.87
A (dev) 0.94 185.72 0.93 169.93 0.72 47.90
B (dev) 0.96 211.32 0.94 190.68 0.71 52.77
C (dev) 0.93 161.16 0.93 160.16 0.70 45.18
D (dev) 0.96 227.85 0.96 212.80 0.71 44.46

Table 2. Architectures comparison: concatenated inputs, merged
inputs embedding and Siamese. Values refer to the accuracy (left)
and t-score (right) obtained on the four different cases. Ruled out
values stand for a p-value above the rejecting threshold.

higher t-score. Results show, we successfully learnt to make the dis-
tinction between target and non-target trials from new utterances on
all cases, excluding D. By the way their respective associated prob-
abilities are under the null hypothesis rejecting threshold. That is to
say, there are few risks having the same mean between target and
non-target scores. Figure 2 illustrates how fast the loss is evolving
and the intrinsic quality of predictions are improving until conver-
gence. After 10-th epoch the model starts overfitting even with the
use of regularization techniques such as dropout.

Given all the constraints we set up, there is no chance to have
such an accuracy on test sets due to randomness. In these cases, the
model found enough information to estimate a similarity between
unseen characters/speakers, which is very interesting. As we illus-
trate in Figure 4, some characters (e.g. hench tali) are easier to rec-
ognize than others (e.g. global zaeed). We could hypothesize that
female speakers may overemphasize on their voice in order to act
like a soldier. That could explain why they get better results. On the
contrary male voices may be more natural in the role of a soldier and
consequently be harder to distinguish.

As expected the SNN gives better performance than the two
other architectures for three out of the four cases. This is true only by
considering the test. The single-network architectures obtain far bet-
ter results on development set. We suppose single-networks (particu-
larly when inputs are concatenated) are able to memorize the couple
of speakers (source, target). In fact, the model seems to recognize
the speakers over the development segments (which are unseen utter-
ances from same training speakers). However, it dramatically fails
on test when confronting to unseen speakers. On the contrary, the
SNN seems to better generalize.

nontarget target

0.3

0.4

0.5

0.6

0.7
Distances target - nontarget (validation)

nontarget target

Distances target - nontarget (test)

Fig. 3. Target (blue) and non-target (orange) scores for case C for
development (left) and test (right) with the SNN architecture.
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Fig. 4. Characters (casesC) appearance count in the different quar-
tiles of prediction error.

5. CONCLUSION & PERSPECTIVES

In this paper we hypothesize that we can benefit from pairwise re-
lationship between different voices to learn a similarity metric for
professional acted voices. Our experimental results show that it is
indeed possible to use Siamese Neural Networks to model this ab-
stract notion of similarity. In addition, we show that this architecture
gives better generalization results on unseen voices, by comparison
to classic architectures. The learnt metric is able to discriminate tar-
get and non-target pairs on new speakers/characters. It means that
the built latent representational space highlights the ”abstract” infor-
mation that we were looking for.

Nevertheless, it is likely to depend on characters involved in both
train and test pairs. Further works could investigate how the system
reacts to particular pairs of characters, and try to take advantages
from it in the learning process. Also, a larger dataset with increased
variability could be very helpful in this way. Furthermore, we made
usage of i-vectors in this very work, because it is a convenient repre-
sentation which had shown its robustness many times. However, we
think that we could benefit from a dedicated representation. In this
approach, we detach the information representation process from the
effective learned task by using the i-vectors space. Future work
would adopt deeper neural architectures in order to jointly learn a
task specific representation. Finally, we could consider the differ-
ent classes of characters (e.g. soldier, alien, scientist. . . ) in order to
leverage the latent space on particular attributes of data. Attention
based model or Conditional-GAN seem to be a promising lead for
further work.
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mouchel, and Pierre Ouellet, “Front-end factor analysis for
speaker verification,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 19, no. 4, pp. 788–798, 2011.

[21] Achintya Kumar Sarkar, Jean-François Bonastre, and Driss
Matrouf, “A study on the roles of total variability space and
session variability modeling in speaker recognition,” Interna-
tional Journal of Speech Technology, vol. 19, no. 1, pp. 111–
120, 2016.

[22] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg
Stemmer, and Karel Vesely, “The kaldi speech recognition
toolkit,” in IEEE 2011 Workshop on Automatic Speech Recog-
nition and Understanding. Dec. 2011, IEEE Signal Processing
Society, IEEE Catalog No.: CFP11SRW-USB.

[23] François Chollet et al., “Keras,” 2015.

[24] Xavier Glorot and Yoshua Bengio, “Understanding the diffi-
culty of training deep feedforward neural networks,” in Pro-
ceedings of the thirteenth international conference on artificial
intelligence and statistics, 2010, pp. 249–256.

6589


		2019-03-18T11:00:22-0500
	Preflight Ticket Signature




