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ABSTRACT

Speech is one of the primary means of communication for
humans. It can be viewed as a carrier for information on sev-
eral levels as it conveys not only the meaning and intention
predetermined by a speaker, but also paralinguistic and extra-
linguistic information about the speaker’s age, gender, per-
sonality, emotional state, health state and affect. This makes
it a particularly sensitive biometric, that should be protected.
In this work we intent to explore how Leveled Homomorphic
Encryption can be combined with a Neural Network to create
a privacy-preserving machine learning framework for speech-
based health-related tasks. In particular, we will apply this
framework to the detection and assessment of a Cold, Depres-
sion and Parkinson’s Disease. Moreover, we will show how
using a Quantized Neural Network, with discretized weights,
allows us to apply a Leveled Homomorphic Encryption tech-
nique called batching that can be utilized to reduce the effec-
tive computational cost of this framework.

Index Terms— Privacy, Machine Learning, Homomor-
phic Encryption, Speech, Health

1. INTRODUCTION

The widespread use of devices with internet access, together
with the emerging market for data mining applications has
raised concerns over the level of privacy currently given to
users. Taking advantage of increasingly accurate Machine
Learning algorithms, many Machine Learning as a Service
providers use sensitive data to extract information and make
predictions about the characteristics of their users.

Among other data types, speech stands out for the amount
of information it holds. Aside from the linguistic content,
from speech one can obtain other information, such as the
speaker’s age, gender, health and personality traits. How-
ever, the reasons that make speech useful also make it a target
for malicious third parties intending to obtain sensitive infor-
mation about unsuspecting users. This is especially true for
health-related applications where a system may try to uncover
whether someone presents symptoms of a medical condition,
as this information is deeply sensitive.

∗This work was supported by national funds through Fundação para a
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Privacy in speech is a fairly recent topic of research. One
of the first strides in this direction was made by Pathak et al.
[1], who adapted a Gaussian Mixture Model (GMM) to work
with Homomorphic Encryption (HE), to perform both speaker
verification and identification. In a different approach, Portêlo
et al. [2], and later Jiménez et al. [3], applied Secure Binary
Embeddings (SBE) and Secure Modular Hashing (SMH) to
speaker verification. More recently Dias et al. [4] applied
SMH and HE to an emotion recognition task, while Teixeira
et al. [5] applied HE to several health-related paralinguistic
tasks.

Outside speech, the literature is extensive, and a large
amount of different techniques has been developed for Privacy-
preserving Machine Learning. An important contribution to
Privacy-preserving Machine Learning was recently proposed
in Cryptonets [6]. In their work, the authors performed the
prediction stage of a Neural Network, using Leveled Ho-
momorphic Encryption (LHE), by replacing all operations
with their homomorphic counterparts. This work was fur-
ther improved by Chabanne et al. [7] and Hesamifard et al.
[8]. This type of approach has the advantage of requiring
only two rounds of communication between the client and
the service provider, while maintaining privacy for the user’s
data at all times, as well as allowing the network’s architec-
ture to remain undisclosed. However, it has the disadvantage
of entailing a large computational overhead. To avoid this
overhead, other approaches have used Oblivious Transfer
(OT) and Garbled Circuits (GC) instead, obtaining very good
performance results, with low communication and computa-
tional costs [9][10][11][12]. Nevertheless, these approaches
do not guarantee the model’s privacy.

Some LHE schemes allow several values to be batched
into a single ciphertext, which can be operated on as SIMD
(Single Instruction, Multiple Data), with a technique called
batching. Since most operations on Neural Networks are vec-
torizable, batching allows several encrypted predictions to be
made at the same time, making this technique particularly in-
teresting for speech applications where predictions may be
made at the frame level, utterance level, or even at speaker
level. Although this technique had already been applied in
Cryptonets, it was not used in our previous work [5]. For
this reason, in this paper we describe how a Neural Network
and its inputs have to be modified in order to allow the use
of batching in an LHE context, and we provide a proof-of-
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concept on how this modified network can be applied to three
speech-based health-related tasks: the detection and assess-
ment of a Cold, Depression and Parkinson’s Disease.

We will not consider performing the training stage in a
secure setting. In fact, due to the accuracy and computational
losses imposed by secure frameworks, few works perform the
training stage in a privacy setting, nevertheless, there are some
notable exceptions [10][13].

The paper is organized as follows: Section 2 introduces
HE. The approach implemented is introduced in Section 3.
Section 4 describes the experimental setup as well as details
on the implementation of the network. Section 5 includes the
results obtained, together with a critical analysis. Section 6
presents our main conclusions and contributions.

2. HOMOMORPHIC ENCRYPTION

Homomorphic Encryption (HE) is a type of cryptosystem in
which certain operations performed on ciphertexts (i.e. en-
crypted values) are homomorphic with regard to the plain-
texts (i.e. unencrypted values). In other words, considering
the encryption of a value x, E(x) and of a value y, E(y), if a
homomorphic operation is performed on the two ciphertexts,
the result of this operation will correspond to the equivalent
unencrypted operation of the two values, as follows:

E(x)⊗ E(y) = E(x× y),
E(x)⊕ E(y) = E(x+ y),

(1)

with ⊗ and ⊕ corresponding to homomorphic multiplication
and addition, respectively.

Most HE schemes are limited either by the type and
amount of operations that can be performed. This may be due
to the construction of the scheme and due to its computational
complexity. A particular type of HE is Leveled Homomor-
phic Encryption (LHE). LHE schemes allow the user to select
the encryption parameters in such a way that it is possible to
determine the maximum amount of operations that can be
performed on the ciphertexts, while still being possible to de-
crypt them correctly. To perform more operations one has to
increase the size of the encryption parameters, however, this
means increasing the computational complexity of each op-
eration in the scheme. To compensate for this computational
limitation, Brakerski et al. [14] introduced batching, allowing
several messages to be encrypted in the same ciphertext and
thus, to be operated on at the same time.

3. PRIVACY-PRESERVING NEURAL NETWORKS

In order to adapt a Neural Network to HE, and transform it
into an Encrypted Neural Network (ENN), it is first necessary
to replace every operation by its HE counterpart. For Fully
Connected (FC) layers, this is simply a matter of replacing
additions and multiplications with their HE equivalent. How-
ever, nonlinear functions in the network (e.g. activation lay-

ers) cannot be computed, and need to be replaced with poly-
nomials. To overcome this, in this work we applied the ap-
proach of Chabanne et al. [7] and Hesamifard et al. [8]. For
this purpose, we used activation functions approximated with
Chebyshev polynomials [8], taken from [5]. Since these have
a limited approximation interval, we introduce a Batch Nor-
malization (BN) layer before each Activation layer, to guar-
antee that its inputs fall within the convergence interval of the
polynomial, as suggested by Chabanne et al. [7]. More con-
cretely, we used Equation 2 as an approximation of the ReLU.

p(x) = 0.03664x2 + 0.5x+ 1.7056 (2)

As stated in the Section 1, the use of batching may entail
several advantages in terms of the performance of the ENNs,
in particular for speech. However, its use is incompatible with
other encoding techniques that allow fractional values to be
encoded into LHE plaintexts. As such, batching requires the
network’s weights and inputs to be discretized. Following the
approach of [6] and [8], in this work, this is done by scaling
the weights up to a fixed precision. Nevertheless, this has to
be done with care, since, in an encrypted context, if the values
grow larger than a threshold value, they will yield incorrect re-
sults after decryption. Considering that the activation layers
used in our networks are 2nd degree polynomials, if a weight
is multiplied by a scaling factor, when an input is forwarded
through the activation layer, the factor will be squared. As
such, propagating scaled values through the network will re-
sult in a very rapid growth of the scaling factor. Thus the
scaling factor has to be selected considering the largest abso-
lute value allowed by encryption scheme. The same problem
holds when considering the inputs, but in this case we can
avoid this problem by quantizing the input features instead,
which allows us to feed them directly to the network as inte-
gers.

4. EXPERIMENTAL SETUP

To determine how feature quantization and weight discretiza-
tion affects the performance of the ENN we performed ex-
periments for a baseline ENN, for a network with quantized
inputs (QNN), as well as for a network with scaled weights
and quantized inputs (Scaled QNN). Since the Scaled QNN
is the only network where every parameter and input is dis-
cretized, we could only use batching with it.

4.1. Datasets

Our experiments were conducted for three different speech
affecting conditions, Cold, Depression and Parkinson’s Dis-
ease. For Cold we used the Upper Respiratory Tract Infec-
tion Corpus (URTIC) [15] to perform a classification task.
This corpus was used in Interspeech’s 2017 ComParE Chal-
lenge [16]. The experiments concerning Depression were per-
formed using the Distress Analysis Interview Corpus - Wizard
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of Oz (DAIC-WOZ) [17], for both regression and classifica-
tion, as in 2016’s AVEC Challenge [18]. Finally for Parkin-
son’s Disease (PD), the Parkinson’s Disease Spanish Corpus
was used for a regression task [19]. This corpus was provided
for the 2015’s Interspeech ComParE Challenge [20]. Since
the labels corresponding to the test set were not available, all
the results reported correspond to the development set of each
corpus. A detailed description of each of the three datasets is
provided in [15], [17], and [19].

4.2. Features

Two different feature sets were used in our experiments.
For the experiments performed on the Depression and Cold
datasets, the eGeMAPS feature set was used. However,
for the Parkinson’s Disease experiment, eGeMAPS did not
achieve significant results. Consequently, a Parkinson’s Dis-
ease specific feature set was used instead. Developed by
Pompili et al. [21], this feature set contains 36 GeMAPS
based features, along with 78 MFCC based features, resulting
in a 114 dimensional feature vector. Both feature sets were
extracted from audio files using openSMILE configuration
files [22]. All features were zero-centered and normalized
with unit variance using the mean and standard deviation
computed from each training set.

4.3. µ-Law Quantization

As was stated in Section 3, to turn the input features into in-
tegers we decided to quantize them. To this end, we first used
the µ-Law companding transformation, displayed in Equation
3, which maps inputs from [−1, 1] to [0, 1].

f(x) = sign(x)
ln(1 + µ|x|)
ln(1 + µ)

(3)

Subsequently, to map the outputs of the function to [0, µ−1] ∈
Z, where µ is the number of quantization channels, we used
the quantization function in Equation 4.

Q(x) =

⌊
µ
f(x) + 1

2
+

1

2

⌋
(4)

Additionally, to promote smaller absolute values, each feature
vector was zero-centered relative to its median value.

4.4. Encryption Parameters

In this work, we used Microsoft’s Simple Encryption Arith-
metic Library (SEAL) [23], which implements the LHE Fan
and Vercauteren (FV) scheme. This library implements inte-
ger and fractional value encoders, which allow us to directly
implement the network without any modification to the inputs
and the network’s weights. However, although the library
also implements batching, these encoders are incompatible
with its use. Some parameters of this library must be selected
by the user: the plaintext modulus, the polynomial modulus,

the coefficient modulus, the encoder’s expansion base and its
number of coefficients.

For the baseline ENN and for the QNN, we used a poly-
nomial modulus of 8,192, a plaintext modulus of 230, and en-
coded weights and input features using SEAL’s Fractional En-
coder, with an expansion base of 3 and 16 coefficients for both
the integer and the fractional part. For the Scaled QNN, the
polynomial modulus was chosen to be 16,384. For batching
to work, it is necessary that the plaintext modulus t be a prime
number, congruent to 1mod 2n, with n being the polynomial
modulus [23]. To account for the large values that arise from
scaling the network’s weights, we chose a plaintext modulus
larger than 259, that fulfills the condition defined above. In
all networks, SEAL’s default value for a security level of 128
bits was selected for the coefficient modulus.

The networks were implemented in C++, using SEAL,
and the encrypted predictions were computed using mul-
tithreading with 24 Intel(R) Xeon(R) CPU E5-2630 v2 @
2.60GHz processors, in a machine with 250 GB of RAM.

4.5. Implementation

Considering that, in SEAL, the maximum value any underly-
ing encrypted variable can take is 260 1, and that the scaling
factor s grows with each layer, we have to ensure that there is
only a minimum amount of parameters that need to be scaled.
As such, in this section we describe how some operations can
be pre-computed, in order to reduce the growth of the scaling
factor. For the reasons stated in Section 3, between each pair
of FC and Activation layers, our encrypted networks include a
Batch Normalization Layer. Since these layers are both linear
transformations, they can be easily collapsed:

yfc+bn = γ
(A · x+ b)− µ√

σ2 + ε
+ β = A′ · x+ b′, (5)

where A and b are the weights and bias of the FC layer, and
γ, β, µ and σ are the scale, bias, mean and standard deviation
of the BN layer, while ε is a small constant for numerical
stability. In this way, the weights of the FC and BN only
need to be scaled once. However, the activation layer, being
a polynomial, includes multiplicative coefficients, which also
need to be scaled. Therefore, to avoid increasing the degree of
the scaling factor, we can instead expand the squared term of
the polynomial, and pre-compute every constant, obtaining:

yfc+bn+act =(A′′ · x)2 +B′′ · x+ c′′ (6)

where A′′ and B′′ are matrices with the same dimensions as
A and c′′ is a bias vector. The final discretized equation for a
set of FC+BN+Act layers then becomes:

yfc+bn+act =(bs ∗A′′c · x)2 + bs2 ∗B′′c · x+ bs2 ∗ c′′c,
(7)

1This value depends on the plaintext modulus.
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Method Cold Depression (Class.) Depression (Regr.) Parkinson’s Disease

F1 Score (%) Precision (%) Recall (%) F1 Score (%) Precision (%) Recall (%) RMSE MAE RMSE MAE ρ

Baseline ENN 56.1 63.2 54.9 55.4 59.9 59.6 6.69 5.59 16.1 12.7 0.43
QNN 53.0 56.7 66.8 60.3 60.2 60.6 6.74 5.62 15.9 12.6 0.53

Scaled QNN 50.2 56.5 66.9 59.8 60.0 60.5 6.67 5.63 15.8 12.6 0.52

Table 1. Results for Paralinguistic Tasks.

where s is the scaling factor.
From these equations, we get that the degree of the scal-

ing factor at the exit of the first FC+BN+Act layer set will
be 2, for the second layer it will be 6, for the third layer 14,
and so on. For this reason, considering the maximum value
allowed, referenced above, if we have a scaling factor of 100,
the depth of the network can be at most 2, otherwise during
the encrypted inference values will not yield a correct decryp-
tion.

4.6. Network Architecture and Training

The network used in our experiments follows a generic archi-
tecture, consisting on two FC layers, each followed by a BN
and an Activation layer, together with a final output FC layer.
The first and second FC layers have 150 and 50 hidden nodes,
respectively, while the output FC layer has only one, for both
classification and regression tasks. For classification tasks, an
output Activation layer was included after the third FC layer.
During training, a dropout layer was also inserted, before the
second and third FC layers [24]. While the first and second
activation layers were polynomial approximations, the output
activation layer introduced for classification tasks is not. In-
stead, a real Sigmoid was used. Due to the low complexity of
the computation of a Sigmoid, we found that using this acti-
vation layer was a positive trade-off between the accuracy of
the model and its privacy.

The size of our network was limited to three sets of layers
for three reasons: on one hand, the datasets used for our ex-
periments are relatively small, and using larger networks did
not yield any performance gains; on the other hand, adding
another layer set (FC + BN + Activation) would require an
increase in the encryption parameters, resulting in a higher
computational toll; finally, including a third set of layers
would cause values in the Scaled QNN to grow larger than
260, which would result in incorrect predictions.

All networks were implemented and trained using Keras
[25], with Tensorflow as backend. The models were trained
with a learning rate of 0.02, 1,000 epochs with early stopping,
and a weight decay of 0.005, using RMSProp. As loss func-
tions, we used Binary Cross-Entropy (BCE) for classification,
and Mean Square Error (MSE) for regression.

5. RESULTS

Previous experiments with other speech tasks showed us that
using 4-bit feature quantization and a scaling factor of s =

150 yielded the best trade-off between accuracy, and the max-
imum absolute value of the network’s computations. In addi-
tion, with this factor, the largest value in the network never
surpasses 255.

Using these values we were able to obtain the results pre-
sented in Table 1, for the three datasets described above. We
can see that there is a slight improvement from the base-
line ENN to the QNN for all four tasks. However, from the
QNN to the Scaled QNN, we can observe some degradation.
While this was to be expected, since by scaling the network’s
weights we are limiting their precision, it was interesting to
see how in some cases the use of quantization helped the net-
work achieve better results. We hypothesize that quantizing
the input features removes some of their noise and variabil-
ity, and thus functions as a regularization technique, which
may help the model to generalize better, and to achieve better
results on unseen data.

When considering computational cost, the implementa-
tion of the ENN and the QNN takes 4.5s to compute a single
encrypted prediction, while the Scaled QNN takes 23s. How-
ever, since 16,384 predictions can be made at the same time,
the effective value for a prediction in the Scaled QNN is 1.4
milliseconds.

6. CONCLUSIONS

In this work we focused on discretizing an NN and its inputs
using feature quantization and weight scaling, in order to ap-
ply an LHE batching technique. Our results showed that this
can be done with minimal accuracy degradation, and we were
able to perform 16,384 simultaneous predictions. However,
this comes at the cost of having a maximum number of 2 acti-
vation layers in the network, and an increase in computational
cost, as a single batch takes around 23 seconds to compute.
Nevertheless, the effective time cost of a single prediction is
1.4 milliseconds as opposed to the original approach where a
prediction took on average 4.5 seconds to compute.

As future work, it would be interesting to explore other
quantization functions to be applied to the input features, as
well as other weight discretization techniques that would not
require the use of a scaling factor. Furthermore, our approach
relies on the client to compute the input features of the net-
work. Since we are considering the setting of a Machine
Learning as a Service Application, it would be important to
minimize the role of the client in the computation process. A
potential way to do this would be research secure frameworks
that could used to develop end-to-end networks.
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