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ABSTRACT 

 
In this paper, we propose a cross-modal student-teacher learning 
framework to make a full use of externally abundant acoustic data 
in addition to a given task-specific audio-visual training database for 
improving speech recognition performance under the low signal-to-
noise-ratio (SNR) and acoustic mismatch conditions. First, a teacher 
model is trained with large-sized audio-only databases. Next, a 
student, namely a deep neural network (DNN) model, is trained on 
a small-sized audio-visual database to minimize the Kullback-
Leibler (KL) divergence between its output and the posterior 
distribution of the teacher. We evaluate the proposed approach in 
both matched and mismatch acoustic conditions for phone 
recognition with the NTCD-TIMIT database. Compared to the DNN 
recognition system trained with the original audio-visual data only, 
the proposed solution reduces the phone error rate (PER) from 
26.7% to 21.3% on a matched acoustic scenario. In the mismatch 
conditions, the PER is reduced from 47.9% to 42.9%. Moreover, we 
show that posteriors generated by the teacher contain environmental 
information, which enables our proposed student-teacher learning to 
work as an environmental-aware training and good PER reductions 
are observed in all SNR conditions. 
 

Index Terms— Audio-visual speech recognition, deep neural 
network, cross-modal training, student-teacher training, transfer 
learning, environmental-aware training 
 

1. INTRODUCTION 
 
Human machine interfaces (HMIs), such as those available in the 
smartphones, autonomous vehicles and robots, are emerging in our 
daily life. Therefore, advanced noise-robust automatic speech 
recognition (ASR) engines are needed for achieving effective HMI. 
In recent years, deep neural network (DNN) based acoustic model 
and its variations, e.g., long-short-term memories (LSTMs), are 
reported to achieve state-of-the-art ASR accuracies, e.g., [1, 2, 3]. 
However, ASR robustness still remains a challenge for DNN-based 
acoustic models. For example, degradation of the DNN performance 
is observed in [4] when the signal-to-noise-ratio (SNR) drops. The 
performance of DNNs also degrades significantly when an acoustic 
model trained with close-talk speech is tested on far-field recordings 
[5]. An effective way to increase the robustness of DNN model is to 
reduce the mismatch between training and testing conditions via 
speech enhancement [6-9]. Meanwhile i-vectors can be incorporated 

as speaker representation or environment information [10-11] into 
the original acoustic features for speaker-aware or environmental-
aware DNN training.  

Motivated by the fact that speech perception is a bi-modal (audio-
visual) process, another line of effort for improving the robustness 
of ASR models is to combine cross-modal information, e.g., the 
spectrogram of acoustic data and lip movement contour are used to 
train an audio-visual ASR [12-25] in which visual information, e.g., 
lip movement and shape, is extracted as eigenlips or DCT features. 
Over the past few decades, many integration strategies have been 
investigated and can be divided into three major categories. In 
feature fusion [12-16], extracted visual information is concatenated 
with the original acoustic information (e.g., mel-frequency cepstral 
coefficients (MFCCs) [26]) to be subsequently used for audio-visual 
model training and ASR decoding. In decision fusion [15-17], 
posterior scores of DNNs trained for each modality are weighted and 
combined to make the final ASR prediction. In intermediate fusion, 
multi-stream hidden Markov models (HMMs) [18-22], coupled 
HMMs [23-24] and the turbo decoder [25] are proposed to seek the 
audio-visual complementarity at a HMM state level. Comprehensive 
comparison among the abovementioned fusion strategies can be 
found in [15], where decision fusion achieved the lowest phone 
accuracy, and intermediate fusion performed slightly better than 
feature fusion.  

Although the previous proposed audio-visual systems have 
achieved satisfactory ASR performances, there is still room for 
further improvements. Specifically, current gains are often limited 
to the size of audio-visual cross-modal databases, which are far 
smaller than available audio-only databases, e.g., LIBRISPEECH 
[27] with approximately 1000 hours of read speech. In fact, most 
reported audio-visual ASR experiments have been conducted using 
commands/digits-like databases such as GRID [28] and CUAVE 
[29]. Due to capturing difficulties and budget constraints, recently 
released TCD-TIMIT [30] audio-visual database for English phone 
recognition has only around seven hours of parallel data. Therefore, 
how to use external abundant audio data to help training audio- 
visual models is a promising direction for further improvement. For 
example, in [31], audio-only GMM-HMM is first trained with an 
external large audio database. Then the best phone state sequence on 
the training set is generated by forced-alignment. Finally, a visual 
GMM-HMM is trained on pairs of visual feature vectors and the 
abovementioned state sequence. Reported gains in [31] are mainly 
due to the better state-level alignments for visual model training, and 
enhanced audio models.  
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In this paper, we propose a novel cross-modal student-teacher 
training framework to make a full use of abundant audio material. 
Specifically, a student audio-visual DNN is trained to minimize the 
Kullback-Leibler (KL) divergence between the student’s output and 
the posteriors generated by a teacher DNN acoustic model well-
trained on large audio-only databases. The generated posteriors can 
be viewed as teacher’s knowledge learned from large audio corpora, 
namely each frame is labeled as a posterior vector not only 
containing phone information, but also embedding environmental 
information, e.g., noise types and SNR levels - an example will be 
later shown in the experiment section. In contrast to the conventional 
acoustic model training, where only phone labels are given, the 
proposed student-teacher framework is therefore environmental-
aware training. Compared to the original system trained only on 
limited audio-visual data, our solution attains good phone error rate 
reductions in both matched and mismatch conditions. 
 
2. OVERVIEW OF THE CROSS-MODAL STUDENT-

TEACHER TRAINING FRAMEWORK 
 
Figure 1 shows the proposed cross-modal student-teacher training 
framework, consisting of DNN-based teacher audio model training 
and student audio-visual model training. In the first training stage, 
the teacher audio model is trained by external audio data in addition 
to the audio portion of the given audio-visual database, and the 
cross-entropy criterion [1] is used. In the second training stage, a 
student audio-visual DNN model is learned by minimizing the KL 
divergence between its network output and the posterior probability 
generated by the trained/copied teacher, in which the input to the 
student model is cross-modal features and its audio part features are 
fed into the teacher model for posteriors generation. To focus on 
effect of our proposed solution, we only adopt feature fusion cross-
modal model training in this work. 
 
2.1. Cross-Entropy Training for Audio Teacher Model 
 
Deep acoustic/audio models in speech applications are often trained 
with acoustic features and their corresponding forced-aligned labels 
generated from trained generative models, e.g. GMM-HMM [1]. 
The traditional cross-entropy training shown in Eq. (1) is used to 

minimize the difference between model’s output and forced-aligned 
labels. 

                                    𝐿𝐿(𝐶𝐶𝐶𝐶)(𝜃𝜃) = −�𝑃𝑃𝑇𝑇�𝑠𝑠𝑖𝑖�𝑥𝑥𝑎𝑎,𝑡𝑡�                           (1)
𝑡𝑡

 

where 𝑃𝑃𝑇𝑇(𝑠𝑠𝑖𝑖|𝑥𝑥𝑎𝑎,𝑡𝑡) is the posterior generated by the teacher DNN, 
𝑥𝑥𝑎𝑎,𝑡𝑡 denotes the acoustic features at time t, and 𝑠𝑠𝑖𝑖 is the i-th shared 
state (senone) [1] representing the ground true state-label at time t. 
 
2.2. Training Audio-Visual Cross-Modal Student Model 
 
The basic idea of traditional student-teacher training is using 
posteriors generated by trained teacher to guide the training of 
student models, e.g., compact DNN for model compression [32], 
enhanced DNN for knowledge distillation [33]. Teacher and student 
models are both trained using the audio modality information. In this 
paper, KL-divergence training shown in Eq. (2) is adopted to 
transfer the knowledge learned from extensive audio data to audio-
visual DNN trained with limited cross-modal data. The transferred 
knowledge is expected to alleviate the shortage of audio-visual data.  

              𝐿𝐿(𝐾𝐾𝐾𝐾)(𝜃𝜃) = ��𝑃𝑃𝑇𝑇(𝑠𝑠𝑖𝑖|𝑥𝑥𝑎𝑎,𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙
𝑖𝑖𝑡𝑡

𝑃𝑃𝑇𝑇(𝑠𝑠𝑖𝑖|𝑥𝑥𝑎𝑎,𝑡𝑡)
𝑃𝑃𝑆𝑆(𝑠𝑠𝑖𝑖|𝑥𝑥𝑎𝑎𝑎𝑎,𝑡𝑡)

             (2) 

where 𝑃𝑃𝑇𝑇(𝑠𝑠𝑖𝑖|𝑥𝑥𝑎𝑎,𝑡𝑡) and 𝑃𝑃𝑆𝑆(𝑠𝑠𝑖𝑖|𝑥𝑥𝑎𝑎𝑎𝑎,𝑡𝑡) are the posteriors generated by 
teacher and student networks, 𝑥𝑥𝑎𝑎,𝑡𝑡  and 𝑥𝑥𝑎𝑎𝑎𝑎,𝑡𝑡  denote the acoustic 
feature and concatenated audio-visual feature at time t, and 𝑠𝑠𝑖𝑖 is the 
i-th senone, respectively. A gradient decent method is used to update 
the parameter θ associated with student audio-visual DNN, while 
DNN parameter θ of trained/copied teacher in Eq. (1) remains fixed. 
 

3. EXPERIMENTS 
 
3.1. Speech Corpora 
 
Two speech corpora, (i) NTCD-TIMIT [16], down-sampled version 
of recently released audio-visual database TCD-TIMIT [30], and (ii) 
100-hour audio data, randomly down sampled from LIBRISPEECH 
[27], are mixed to train DNN-based audio and audio-visual models. 
In this paper, the 100-hour LIBRISPEECH subset is treated as an 
external audio database for training purposes.  
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Figure 1: Overview of the cross-modal student-teacher training framework 
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    Table 1 reports additional information on the clean speech portion 
selected from NTCD-TIMIT. To construct the multi-condition 
acoustic model, each NTCD-TIMIT utterance is added with 5 noise 
types selected from [34] at 5 different SNR levels from 0dB to 20dB 
at a 5dB interval. The same data augmentation method is applied to 
the 100-hour LIBRISPEECH dataset, but one more down sampling 
step is executed to avoid a fully-expanded 2500-hour training set. 
Next, the abovementioned augmented datasets are merged to train 
the DNN-based audio teacher model, and the expanded audio-visual 
set is used to train the student model. Finally, a mismatched testing 
set is created by mixing another five different noise types from [34] 
with the test set in Table 1. 
 
3.2. Audio Teacher DNN Model Training Setup 
 
The speaker-independent acoustic model is trained with the open 
source Kaldi toolkit [35], and the shared scripts in [16]: a CD-GMM-
HMM acoustic model is initially trained with the speaker-adaptive-
training criterion. Then the CD-DNN-HMM model is built using 
alignments provided by the CD-GMM-HMM system. The DNN has 
six hidden layers each containing 1024 sigmoid units. The DNN 
input spans a window of 11 consecutive speech frames. Each frame 
contains 40-dimensional feature-space maximum likelihood linear 
regression (fMLLR) features. 
 
3.3. Audio-Visual Student DNN Model Training Setup 
 
Except for the input dimension, the speaker-independent audio-
visual DNN model has the same architecture as its teacher model. 
Namely, 40-dimensional fMLLR visual feature extracted like in [16] 
is concatenated with 40-dimensional fMLLR audio feature as an 
audio-visual feature vector fed for DNN training. The audio-visual 
student model is trained to minimize KL divergence between its 
output and the posteriors generated by the trained teacher, where the 
input of student model is audio-visual feature and its audio part 
feature is fed into the teacher model for posteriors generation. A 
biphone language model is built using the training set in Table 1. 
 
3.4. Experimental Results and Discussions 
 
Table 2 shows the PER for different audio and audio-visual ASR 
systems. The baseline DNN audio system achieves a 27.3% PER, 
and extra visual information reduces it to 26.7%. This improvement 
is much smaller than reported result in many published papers [12-
25], where acoustic mismatch between training and testing set is 
designed to show the importance of visual information. Therefore, 
we evaluate the first two DNN models on unmatched testing sets. 
The PER is reduced from 60.4% to 47.9% (as shown in Figure 2), 
which confirms previous argument that extra visual features can 
reduce PER under the adverse acoustic conditions.  
     We next evaluate the improvement brought by extra audio data 
from the LIBRISPEECH database. The DNN audio model trained 
with more data achieves a better result, and the PER is further 
reduced to 24.1%. The improvement is mainly caused by a much 
larger-sized training set, covering a broader acoustic space.  

     Subsequently, our proposed student-teacher training framework 
is compared with the abovementioned baselines. In this case, 
conventional student-teacher training [32-33] is first evaluated on 
the same modality space, namely, student and teacher models are 
trained using only audio features. The fourth and fifth rows in Table 
2 show that student-teacher training can let a DNN, trained with only 
a small amount of audio data, achieve similar performance with the 
teacher DNN trained with the full set data. Similar to previous 
published results [32-33], the student’s PERs should be close to, but 
cannot surpass the teacher’s performance, because the student DNN 
is trained with teacher’s posterior distribution using the same audio 
features. Next, we use cross-modal (audio-visual) features to let 
student mimic teacher’s performance. Surprisingly, the student 
DNN, with 22.8% PER, beats the teacher with 24.1% PER and 
achieves the lowest PER. One reason is that the student model uses 
better/complementary features, e.g., audio + visual, compared with 
the teacher, where only audio information is used. At testing stage, 
cross-modal features can help student easily map the input features 
into the expected posterior distribution. In contrast, the teacher 
trained with only one modality features faces a bigger challenge at 
mapping input feature into the expected posteriors learned from the 
training set.  
     At first glance, extra visual information and cross-modal student-
teacher training both bring improvement over audio-only ASR 
systems. To have a deeper understanding of the source of the gains, 
we broke down the PERs of the test set according to different SNR 
levels. The SNR-dependent PERs are summarized in Tables 3-7. 
Tables 3 and 4 shows that visual features are not always helpful in 
higher SNR conditions, e.g., 15dB and 20dB. This observation is 
consistent with previous reported results in [21, 22], where a strategy 
equally reliant on audio and visual information is adopted, as in this 
work. Obviously, we need to pay more attention to audio streams at 
high SNR. Complementary information from the visual modality is 
instead useful in low SNR conditions. 
     More interestingly, we find that student-teacher cross-modal 
training achieves lower PER in all SNR conditions than its audio-
only counterpart shown in the Tables 5 and 7 although audio and 
visual features are still equally treated. It seems that posteriors 
generated by the teacher contain environmental information, making 
student-teacher training acting as an environmental-aware training, 
where DNN is trained to learn the mapping function between audio-

Table 1: Details of audio-visual corpus used in our experiment 
 Training Set Development Set Testing Set 

Hours ≈5 h ≈1 h ≈1 h 
Speakers 39 8 9 

Utterances 3822 784 882 

 

Table 2: phone error rate (PER) on matched condition test 
sets. The first column denotes the training sets and modalities 
for training teacher model. The second column indicates the 

training set and modalities for training student model. If none, 
the teacher model is used for evaluation. The third column 

shows the PER. 
Train Teacher Train Student PER 

audio data 
NTCD-TIMIT none 27.3% 

audio-visual data 
NTCD-TIMIT none 26.7% 

audio data 
LIBRISPEECH+NTCD-

TIMIT 
none 24.1% 

audio data 
LIBRISPEECH+NTCD-

TIMIT 

audio data 
NTCD-TIMIT 24.4% 

audio data 
LIBRISPEECH+NTCD-

TIMIT 

audio-visual 
data 

NTCD-TIMIT 
22.8% 
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visual features and the corresponding labels, including the phone 
identity, the noisy type and the SNR information. To visualize the 
SNR information contained in the posteriors generated by the 
teacher, one utterance in the training set is first selected and mixed 
with a fixed noise type at 5 different SNR levels to create five 
utterances in order to compare the 5x5 pair-wise KL divergence. As 
shown in Table 9, close SNR values between the pair usually imply 
low KL divergence which is calculated using Eq. (3) below:       

  𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄||𝑃𝑃) =
1
𝑇𝑇��𝑄𝑄(𝑠𝑠𝑖𝑖|𝑥𝑥𝑞𝑞,𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙

𝑖𝑖𝑡𝑡

𝑄𝑄(𝑠𝑠𝑖𝑖|𝑥𝑥𝑞𝑞,𝑡𝑡)
𝑃𝑃(𝑠𝑠𝑖𝑖|𝑥𝑥𝑝𝑝,𝑡𝑡)

 (3) 

where 𝑄𝑄(𝑠𝑠𝑖𝑖|𝑥𝑥𝑞𝑞,𝑡𝑡)  and 𝑃𝑃(𝑠𝑠𝑖𝑖|𝑥𝑥𝑝𝑝,𝑡𝑡)  are the frame-level posteriors 
generated by teacher, 𝑥𝑥𝑝𝑝,𝑡𝑡 and 𝑥𝑥𝑞𝑞,𝑡𝑡 denote acoustic feature at time t 
for utterance P and Q, and 𝑠𝑠𝑖𝑖 is the i-th senone. T is utterance length.  
      Although our proposed cross-modal student-teacher training 
enhanced audio-visual ASR performance, there is still room for 
further improvements. Specifically, we averaged the posteriors 
extracted from forced-alignment and the trained teacher for better 
audio-visual DNN model training. In doing so, Tables 7 and 8 shows 
that PER is further reduced from 22.8% to 21.3%, this gain mainly 
comes from low SNR conditions, e.g., 0 dB and 5 dB. One reason is 
that posterior produced by the teacher DNN is not very accurate in 

lower SNRs. Therefore, combing it with force-aligned targets can 
make the student DNN learn more accurate senone labels. Finally, 
the reductions in PERs shown in Figure 2 also demonstrate our 
proposed system’s efficiency in mismatch conditions.  

4. CONCLUSIONS AND FUTURE WORK

Through a series of systematic experiments, we have shown that the 
performance of audio-visual ASR system for phone recognition can 
be improved by utilizing external audio data and cross-modal 
student-teacher training, where audio teacher model trained by extra 
large audio database can transfer learned knowledge to audio-visual 
student model trained with limited cross-modal data. In this paper, 
learned knowledge refers to posteriors generated by teacher model, 
it not only contains phone labels but also embeds environmental 
information, e.g., SNR levels and noise types. Therefore, the 
proposed student-teacher framework works as environment-aware 
training and provides more accurate labels to describe the input 
audio-visual features. Finally, systems trained with the posteriors 
extracted from forced-alignment and trained teacher achieve the best 
performance, namely our proposed system reduces the phone error 
rate from 26.7% to 21.3% on matched scenarios. In the mismatch 
condition, the phone error rate is reduced from 47.9% to 42.9%. 
     In the future, sequential student-teacher training proposed in [37] 
will be investigated. Moreover, the weights between posteriors from 
forced-alignment and trained teacher will also be analyzed in detail.   
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Table 3: SNR-dependent PER on test set, average PER is 27.3%  
Train Teacher: audio data NTCD-TIMIT 

Train Student: none 
0dB 5dB 10dB 15dB 20dB 

36.7% 29.9% 25.5% 22.9% 21.6% 

Table 4: SNR-dependent PER on test set, average PER is 26.7%  
Train Teacher: audio-visual data NTCD-TIMIT 

Train Student: none 
0dB 5dB 10dB 15dB 20dB 

34.5% 28.8% 25.2% 23.1% 22.0% 

Table 5: SNR-dependent PER on test set, average PER is 24.1%  
Train Teacher: audio data LIBRISPEECH+NTCD-TIMIT 

Train Student: none 
0dB 5dB 10dB 15dB 20dB 

33.8% 26.5% 22.1% 19.6% 18.3% 

Table 6: SNR-dependent PER on test set, average PER is 24.4%  
Train Teacher: audio data LIBRISPEECH+NTCD-TIMIT 

Train Student: audio data NTCD-TIMIT 
0dB 5dB 10dB 15dB 20dB 

34.3% 26.9% 22.4% 19.9% 18.5% 

Table 7: SNR-dependent PER on test set, average PER is 22.8%  
Train Teacher: audio data LIBRISPEECH+NTCD-TIMIT 

Train Student: audio-visual data NTCD-TIMIT 
0dB 5dB 10dB 15dB 20dB 

32.5% 25.1% 20.7% 18.4% 17.2% 

Table 8: SNR-dependent PER on test set, average PER is 21.3%  
Train Teacher: audio data LIBRISPEECH+NTCD-TIMIT 

Train Student: audio-visual data NTCD-TIMIT 
Combine CE and KL Training [36] (equal weight) 

0dB 5dB 10dB 15dB 20dB 
28.5% 22.9% 19.8% 18.1% 17.2% 

Table 9: KL divergence for each utterance pair (Q and P), 
where utterance is represented by its corresponding SNR 

value.    
  Q  

  P 0 dB 5 dB 10 dB 15 dB 20 dB 

0 dB 0 0.59 1.14 1.55 1.84 
5 dB 0.64 0 0.28 0.65 0.95 

10 dB 1.74 0.35 0 0.15 0.37 
15 dB 2.55 0.87 0.17 0 0.08 
20 dB 3.06 1.28 0.45 0.09 0 
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