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ABSTRACT
In this paper, we propose a novel method to capture energy
modulations from different frequency bands in speech into
frame-level feature vectors, called Modulation-vectors or M-
vectors, for use in Automatic Speech Recognition (ASR) sys-
tems. We show that in different multi-stream setups, with
parallel streams for M-vectors and the popular Mel-frequency
Cepstral Coefficient (MFCC) features, we can realize a boost
in word recognition performance of end-to-end systems by
≈ 5%, and that of a monophone and triphone HMM-GMM
ASR system by ≈ 18% and ≈ 16% respectively over using
the traditional MFCC features.

Index Terms— Automatic Speech Recognition, Feature
Extraction, Modulation Spectrum, Hilbert Envelope, Multi-
stream Automatic Speech Recognition

1. INTRODUCTION

Log Mel Bank features or Mel Frequency Cepstral Coeffi-
cient (MFCC) have become the standard features for Auto-
matic Speech Recognition (ASR). However, these traditional
features are frame based, each feature vector describing short
(10-20 ms) segments of the signal. Typically, in an ASR, dy-
namic features representing feature differentials in the frame
location (delta features) are appended to the static feature vec-
tor and several (currently up to about twenty or even more)
adjacent frames of such static and dynamic features are typi-
cally concatenated together to describe the local spectral dy-
namics, in effect representing a form of modulation spectrum
of speech. Although there has been a few prior works on the
usefulness of modulation spectral features for speech recog-
nition [1, 2, 3], its full potential in ASR is yet to be explored.

In this paper, we use a novel approach to compute the rate
of change of energy in different sub-bands of speech (simi-
lar to the idea of modulation spectrum of speech) using Fre-
quency Domain Linear Prediction (FDLP). We use the pro-
posed M-vectors in different multi-stream settings to study
its effect on speech recognition accuracy. The paper is orga-
nized as follows: In section 2, we discus in details, the theory

behind our method of deriving the modulation spectrum and
then in section 3 we go on to describe how we compute the
frame-wise features using this technique. We describe our
experimental setup in section 4 and illustrate our results in
section 7 before we conclude our paper in section 6 with the
important takeaways.

2. COMPUTING ENERGY MODULATIONS OF
SPEECH

We derive the energy modulations of speech using autoregres-
sive (AR) modeling of the squared magnitude of the analytic
signal [4] (called Hilbert Envelope) of speech in K individual
frequency sub-bands weighted by overlapping triangular win-
dows in the mel frequency scale. The Hilbert Envelope (HE)
represents the energy of the signal as a function of time and
hence its AR approximation captures coarse variations in en-
ergy in each sub-band as a function of time. In this paper, we
use approximations to this energy trajectory to derive speech
features for use in automatic recognition of speech. Unlike
traditional feature computation methods, we design the fea-
ture vector to captures the energy modulations over a much
wider temporal context of 0.5 seconds. Thus, the proposed
features have a neat way of modelling the temporal dynam-
ics compared to simple concatenation of frame-wise features
that is usually done at the front-end of ASR systems. To ap-
proximate the Hilbert Envelope of the signal in the individual
frequency bands, we use the technique of Frequency Domain
Linear Prediction (FDLP). [5]

2.1. Linear Prediction in time domain

The technique of Linear Prediction (LP) [6] has long been
used in multiple fields of signal processing as a method of
approximating the power spectrum of a discrete signal x[n],
n representing the time index, by the power spectrum of an
autoregressive model. The degree of detail of the spectrum is
controlled by choice of the all-pole model order p. This type
of LP models are also termed Time Domain Linear Prediction
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(TDLP).

2.2. Linear Prediction in frequency domain

The frequency domain equivalent of TDLP is FDLP, which
was developed by Athineos [7] by applying the autocorre-
lation LP method on the Type-I Discrete Cosine Transform
(DCT) X[k] of the signal x[n], k representing the frequency
index as is typically denoted for DCT. Linear prediction of
the sequence X[k] results in an AR model of the Hilbert En-
velope of the even-symmetrized version of the signal x[n]. A
proof of this result can be found in [8]

The FDLP envelope provides a way of looking at the en-
ergy variations of a signal as a function of time with desired
levels of approximation determined by the AR model order p.
The filter gain G is computed as the squared error sum of the
LP fit.

2.3. Approximating Hilbert Envelopes in individual fre-
quency bands

FDLP can be also used to approximate Hilbert envelopes of
parts of the signal spectrum. As proposed in [7], since the
cosine transform of the signal X[k] moves the problem into
frequency domain, appropriate window on the X[k] selects
the part of the signal spectrum to be approximated.

2.4. Computing Energy Modulations by recursive cep-
strum computation

We compute the energy modulation coefficients as the Dis-
crete Fourier Transform (DFT) of the logarithm of the filter
response to the inverse FDLP filter. It should be noted that
this definition of the modulation coefficient makes it possible
to compute them by using the recursive LP cepstrum compu-
tation formula [9]. This results in a significant improvement
in computational efficiency for the features and the computa-
tion time is mostly dominated by computation of FDLP coef-
ficients.

3. FRAME-WISE M-VECTOR COMPUTATION

In this section, we show the steps we follow to obtain frame-
wise M-vectors for the front-end of an ASR system. Since
typical Hidden Markov Model (HMM) based ASR systems
require feature vectors about every 10 ms, we divide the sig-
nal into long windows of length 0.5 seconds and a frame-rate
of 100 Hz. This ensures that we can obtain the M-vectors over
a wide acoustic context and at the same time generate frame-
level features at a rate expected by most ASR systems. We
use 0.5 second Hanning window which decays down to zero
at the edge of the window. This ensures that the M-vectors
are computed with maximum emphasis over the modulations
at the central quarter of each window. We use K triangu-
lar filters in the mel frequency scale to window the the DCT

of the windowed signal into different sub-bands and obtain
the energy modulation coefficients for each band. The final
M-vector is obtained by concatenating the energy modulation
coefficients from all the sub-bands.

3.1. Dealing with context at the edges

With such large windows, one challenge is to deal with data at
the edges of the processed speech utterance. In general, since
a considerably large portion around the edges of a speech ut-
terance is silence, the problem is addressed by mirroring the
silence segments at the edges of a speech file to provide for
enough initial and final extension to the utterance to fit the
long processing window.

3.2. M-vector parameters

M-vector computation has 4 important parameters to config-
ure

• The number of modulation coefficients decides what
range of rate of variation of energy is desired. Previous
experiments have shown that the modulations in human
speech are the most important in the range 2-8 Hz [10]
with maximum linguistic information around 4 Hz. In
our experiments, we observed that even the DC compo-
nent of modulation has some information that is useful
for speech recognition. Thus, we preserve the first 15
coefficients of energy modulations for our feature vec-
tors to capture modulations in the range 0-8 Hz.

• The window size determines the temporal context over
which the energy modulations are going to be com-
puted. A high window length of 1 seconds or a small
window length of 0.25 seconds appears to degrade the
recognition performance and also captures modulations
over different frequency ranges which are not relevant
to acoustic modulations in speech.

• The FDLP order p determines the degree of approxima-
tion of the Hilbert Envelope. We use 100 poles per sec-
ond for our experiments. We observed that the recogni-
tion performance did not change drastically as long as
poles per second is not pushed to extremes.

• Number of sub-bands K appears to be no significant
difference between recognition performance for 7,15
and 30 sub-bands. Hence, for computational efficiency
we use 7 sub-bands for our experiments.
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Fig. 1. Process of deriving M-vectors. A Hanning-windowed
segment of speech is transformed through cosine transform
into frequency domain. Properly shaped windows on the co-
sine transform of the signal emulate frequency filtering. The
windowed segments are used for deriving all-pole models,
which approximate Hilbert envelopes in the individual fre-
quency bands. Concatenated rates of change (modulations)
of the band-specific Hilbert envelopes form the feature vector
describing the windowed speech segment.

3.3. Baseline features

We use standard 13 dimensional MFCC features for compar-
ison with 15 triangular filters in the mel-scale for comparison
with our M-vectors. It should be noted that, although we use
the Kaldi ASR system [11] for all our experiments, we use
our own feature computation codes to make sure that the fea-
tures in comparison are perfectly time aligned and have the
same number of frames.

4. EXPERIMENTAL SETUP

We validate the importance of the acoustic information in
M-vectors by conducting experiments with HMM-GMM and
end-to-end ASR systems.

4.1. HMM-GMM Systems

Using M-vectors directly in the standard HMM-GMM sys-
tems results in the following issues

1. MFCC features and M-vectors have different numerical
ranges and hence it becomes difficult to avoid the ASR
system to not get biased towards one of them when
we simply concatenate MFCC features and M-vectors.
Hence, it is necessary to bring the information from the
two features to a similar numerical range.

2. The M-vectors are not normally distributed. Hence it is
not very well modelled by HMM-GMM systems with
diagonal covariance matrices.

4.1.1. Data-driven multi-stream feature generation
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Fig. 2. Combining the MFCC and M-vector feature streams

Multi-stream ASRs have gained much importance in speech
recognition research in recent days [12, 13, 14, 15]. We use a
multi-stream ASR system for combination of the two differ-
ent feature streams into a single feature vector to be used in
speech recognition. The multi-stream system is set up in the
following way

• Stage1: We train a monophone HMM-GMM ASR sys-
tem with MFCC features to generate phonetic align-
ments on the training data. We use the phonetic align-
ments to train individual parallel hybrid systems with
MFCC and M-vectors. For MFCC we use ±4 context
window, and for M-vectors we do not use any feature
splicing. However, both features were mean and vari-
ance normalized before any other operations.

• Stage2: The presoftmax state posteriors from the DNN
from the two streams above are concatenated into one
feature vector which is used to train another combina-
tion hybrid system

• M-vector-MFCC feature generation: The presoft-
max state posteriors from the combination DNN are re-
duced in dimension using Principal Component Anal-
ysis (PCA) to 13 dimensions and used as the final
data-driven feature vector for ASR systems. We do not
further splice these features for use in ASR systems
because they have been derived over a large temporal
context. We perform mean and variance normalization
on these features before using them for ASR systems.

All the hybrid systems are trained with 5 layered DNNs
with 256 nodes and tanh non-linearities using the Kaldi nnet2
recipe.

4.1.2. ASR details

We used Monophone and Triphone ASR systems with three
state left-to-right HMMs for each phoneme from a basic set
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of 43 phonemes. The phonemes are split based on context
and pronunciation emphasis into a set of 351 phonemes in
the standard Kaldi recipe. We use a trigram language model
alongside the acoustic model. All the ASR systems are
trained using the Kaldi ASR system.

4.2. End-to-end multi-stream system

We set up an joint CTC-attention end-to-end system as pro-
posed in [16], but with two encoders from two different fea-
ture streams - MFCC and M-vectors. The two encoders and
CTC networks are of type BLSTM while the single decoder
network is an LSTM. The streams are ultimately combined
using a hierarchical attention mechanism and coupled to the
decoder [17]. The final word error rate using the end-to-end
system is obtained by decoding with a Recurrent Neural Net-
work (RNN) language model.

5. RESULTS

We look at how the sub-band speech modulations in M-
vector can be used alongside the usual MFCC features to
boost recognition performance.

5.1. Database

All our experiments have been done using the entire Wall
Street Journal(WSJ) database. Our ASR training and test sets
consists of all the 37416 utterances (≈ 82 hours) in si284
and the 333 utterances in eval92 respectively.

5.2. Usefulness of M-vectors

We use the M-vector-MFCC features from section 4.1.1 to
train a monophone HMM-GMM system (section 4.1.2).

In order to verify that the M-vectors are indeed infor-
mation bearing components which can be used to boost in
the ASR performance, we use the presoftmax state posteriors
from the DNN in the MFCC stream at Stage 1 (dimension re-
duced and de-correlated by PCA) effectively generating Tan-
dem features [18] from MFCC for comparison with the final
combined features. Similar features can be obtained from the
presoftmax state posteriors from the DNN in the M-vector
stream. The results are shown in table 1.

Table 1. Usefulness of M-vectors with data-driven multi-
stream features for HMM-GMM ASR systems

Feature Type WER (%)

MFCC 26.28
MFCC Tandem 22.59
M-vector Tandem 27.40
M-vector-MFCC 21.64

The results from the multi-stream end-to-end system (sec-
tion 4.2) is also shown in table 2.

Table 2. Usefulness of M-vectors in a multistream setup with
MFCC for end-to-end ASR systems

E2E System # Params WER (%)

Single-Stream
MFCC 15.2M 6.4
M-vector 15.4M 9.8

Multi-Stream
MFCC+M-vector 14.6M 6.1

In end-to-end systems, all the model parameters are
trained together. Hence, it is important to have the number of
parameters of different models in the same range for effective
comparison. Since the multi-stream system has two encoders,
we use 8 encoder layers for the single-stream system and 4
encoder layers per stream for the multi-stream system to keep
the number of parameters approximately same.

5.3. HMM-GMM ASR Performance

Table 3 compares the performance of Monophone and tri-
phone ASR systems on the WSJ database for MFCC and M-
vector-MFCC features ( as described in section 4.1.1).

Table 3. Comparison of HMM-GMM ASR performance for
MFCC and M-vector-MFCC features

ASR Systems WER (%)
MFCC M-vector-MFCC

Monophone 26.28 21.64
Triphone 13.22 11.11

.
6. CONCLUSIONS

The results from table 1 show that there is ≈ 4.2% improve-
ment in recognition accuracy over data driven MFCC-tandem
features by merging the two feature streams. A similar im-
provement of≈ 5% is observed for a multi-stream end-to-end
system processing the information from both feature streams
together over a single stream end-to-end system with MFCC
feature.
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