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ABSTRACT

We investigate unsupervised models that can map a variable-
duration speech segment to a fixed-dimensional representation.
In settings where unlabelled speech is the only available re-
source, such acoustic word embeddings can form the basis
for “zero-resource” speech search, discovery and indexing sys-
tems. Most existing unsupervised embedding methods still
use some supervision, such as word or phoneme boundaries.
Here we propose the encoder-decoder correspondence autoen-
coder (ENCDEC-CAE), which, instead of true word segments,
uses automatically discovered segments: an unsupervised term
discovery system finds pairs of words of the same unknown
type, and the ENCDEC-CAE is trained to reconstruct one word
given the other as input. We compare it to a standard encoder-
decoder autoencoder (AE), a variational AE with a prior over
its latent embedding, and downsampling. ENCDEC-CAE out-
performs its closest competitor by 29% relative in average
precision on two languages in a word discrimination task.

Index Terms— Acoustic word embeddings, zero-resource
speech processing, unsupervised learning, query-by-example.

1. INTRODUCTION

Current speech recognition models require large amounts of
annotated resources. For many languages, the transcription of
speech audio remains a major obstacle [1]. This has prompted
research into zero-resource speech processing, which aims to
develop methods that can discover linguistic structure and rep-
resentations directly from unlabelled speech [2–4]. This prob-
lem also has strong links with early language acquisition, since
infants learn language without explicit hard supervision [5, 6].

Several zero-resource tasks have been tackled. In unsu-
pervised term discovery (UTD), the aim is to find recurring
word- or phrase-like patterns in an unlabelled speech collec-
tion [7]. In query-by-example search, the goal is to identify
utterances containing instances of a given spoken query [8–11].
Full-coverage segmentation and clustering aims to tokenise an
entire speech set into word-like units [6, 12–15]. In all these
tasks, a system needs to compare speech segments of variable
length. Dynamic time warping (DTW) is traditionally used, but
is computationally expensive and has known limitations [16].

Recent studies have therefore explored an alignment-free
methodology where an arbitrary-length speech segment is em-
bedded in a fixed-dimensional space such that segments of
the same word type have similar embeddings [17–25]. Seg-
ments can then be compared by simply calculating a distance
in this acoustic word embedding space. Several unsupervised
methods have been proposed, ranging from using distances
to a fixed reference set [18], to unsupervised auto-encoding
encoder-decoder recurrent neural networks [19, 20]. Down-
sampling, where a fixed number of equidistant frames are used
to represent a segment, has proven to be an effective and strong
baseline [13, 24]. Many of the more advanced unsupervised
models, however, still use some form of supervision, normally
in the form of known word boundaries [18, 19, 23].

We propose a new neural model which is truly unsuper-
vised, assuming no labelled speech data or word boundary
information. We use a UTD system—itself unsupervised—to
find pairs of word-like segments predicted to be of the same
unknown type. Each pair is presented to an autoencoder-like
encoder-decoder network: one word in the pair is used as the
input and the other as the target output. The latent represen-
tation between the encoder and decoder is used as acoustic
embedding. We call this model the encoder-decoder correspon-
dence autoencoder (ENCDEC-CAE). The idea is that the model
should learn an intermediate representation that is invariant
to properties not common to the two segments (e.g. speaker,
channel), while capturing aspects that are (e.g. word identity).

We compare this model to downsampling [18] and an
encoder-decoder autoencoder [19] trained on random seg-
ments. We also propose another model: an encoder-decoder
variational autoencoder, which incorporates a prior over its la-
tent embedding. We show that the ENCDEC-CAE outperforms
the other models in a word discrimination task on English
and Xitsonga data. In Xitsonga, it even outperforms a DTW
approach which uses full alignment to discriminate words.

2. ACOUSTIC WORD EMBEDDING METHODS

We consider three unsupervised neural models in this work, all
using an encoder-decoder recurrent neural network (RNN) ar-
chitecture [26,27]. The first model was proposed as an acoustic
embedding method in [19], while the other two are new.
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2.1. Encoder-decoder autoencoder

An encoder-decoder RNN consists of an encoder RNN, which
reads in an input sequence while sequentially updating its
internal hidden state, and a decoder RNN, which produces
an output sequence conditioned on the final output of the en-
coder [26]. Chung et al. [19] trained an encoder-decoder as
an autoencoder (ENCDEC-AE) on unlabelled speech segments,
using the input of the network as the target, as shown in Fig-
ure 1(a). The final fixed-dimensional output vector z from the
encoder (red in Figure 1) gives an acoustic word embedding.

More formally, an input segment X = x1,x2, . . . ,xT
consists of a sequence of frame-level acoustic feature vectors
xt ∈ RD (e.g. MFCCs). The loss for a single training example
is `(X) =

∑T
t=1 ||xt − f t(X)||2, with f t(X) the tth decoder

output conditioned on the latent embedding z, which itself is
produced as the output of the encoder when it is fed with X .

In our implementation of the ENCDEC-AE we use a trans-
formation of the final hidden state of the encoder RNN to
produce the embedding z ∈ RM , as also in [20]. We use gated
recurrent units [28] as the RNN cell type in all the models here.
This worked better than LSTMs in validations experiments.
Most importantly, instead of using true word segments [19],
we train the ENCDEC-AE on random speech segments.

2.2. Encoder-decoder variational autoencoder

A variational autoencoder (VAE) is a generative neural model
which uses a variational approximation for inference and train-
ing [29]. A complete treatment of VAEs is outside the scope
of this work, so we refer readers to [29, 30]. Here we only
describe how we develop the encoder-decoder VAE (ENCDEC-
VAE), where the decoder can be seen as a generative sequence
model conditioned on a latent representation z, which we
use as acoustic embedding. We show that by choosing spe-
cific distributions, the model can be interpreted as a standard
ENCDEC-AE with a prior over its latent embedding.

For the ENCDEC-VAE, it is useful to think of the encoder
and decoder as separate networks with parameters φ and θ,
respectively. The encoder density is denoted as qφ(z|X) and
the decoder as pθ(X|z), as in Figure 1(b). For a single training
sequence X , the ENCDEC-VAE maximises a lower bound for

log pθ(X) = log

T∏
t=1

pθ(xt|x<t) =
T∑
t=1

log pθ(xt|x<t) (1)

By approximating the intractable posterior pθ(z|X) using the
encoder qφ(z|X), each of the terms in the above summation
can be bounded, as is done in the standard VAE [29]:

log pθ(xt|x<t) ≥ Eqφ(z|X) [log pθ(xt|x<t, z)]
−DKL (qφ(z|X)||p(z)) = Jt(X) (2)

with DKL denoting the Kullback-Leibler divergence and Jt
the evidence lower bound for frame xt. The expectation in (2)
is often approximated as Eqφ(z|X) [log pθ(xt|x<t, z)] ≈
log pθ(xt|x<t, z′), using the single Monte Carlo sample z′ ∼

x1 x2 x3 xT

f1 f2 f3 fT

z

pθ(X|z)

qφ(z|X)

(a) EncDec-AE (b) EncDec-VAE

X

acoustic word
embedding

Fig. 1. The ENCDEC-AE is trained to predict its input (a speech
segment) from the latent acoustic word embedding z. The
ENCDEC-VAE is a generative model which incorporates a prior
over the latent acoustic embedding z.

qφ(z|X). The reparametrisation trick is used to backpropagate
through this sampling operation. Choosing a spherical Gaus-
sian distribution for the decoder output pθ(xt|x<t, z) with
mean f t(z

′) and fixed covariance σ2I, this approximation
term reduces to log pθ(xt|x<t, z′) = c− 1

2σ2 ||xt − f t(z′)||
2,

with c a density normalisation constant and f t(z
′) the tth out-

put of the decoder network given the sampled latent variable
z′. The KL-term in (2) also has a closed-form solution when
assuming a standard Gaussian prior p(z) = N (z;0, I) and
a diagonal-covariance Gaussian distribution for the encoder
qφ(z|X) = N (z;µφ(X),diag(σ2

φ(X))); see [29, Appx B].
These mean µφ(X) and covariance σ2

φ(X) vectors are pro-
duced as outputs of the encoder given input sequence X .

Taking together the above equations, the ENCDEC-VAE’s
loss for a single training sequence X is thus

`(X) = −
T∑
t=1

Jt(X)

=

T∑
t=1

[
1

2σ2
||xt − f t(z′)||

2
+DKL (qφ(z|X)||p(z))

]
This is a combination of a reconstruction term (as for the stan-
dard ENCDEC-AE) and a KL-regularisation term encouraging
embedding z given inputX to be close to the prior distribution
p(z). The σ hyperparameter controls the relative weight of
reconstruction vs. regularisation. We use σ = 10−5 (optimised
in validation), so high emphasis is placed on reconstruction.

One motivation for the ENCDEC-VAE is that in the ENCDEC-
AE we have empirically observed that embeddings for words
of different types often take on very similar values across
embedding dimensions. By specifying a prior, we obtain a
handle on the spread or concentration of embedding values.

2.3. Encoder-decoder correspondence autoencoder

While the ENCDEC-AE uses the same speech segments as input
and output, the encoder-decoder correspondence autoencoder
(ENCDEC-CAE) uses weak top-down constraints in the form of
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pair
discovered

X(a)

X(b)

Fig. 2. An unsupervised term discovery system is used to
obtain input-output speech segments for the encoder-decoder
correspondence autoencoder (ENCDEC-CAE).

discovered word pairs to have input and output sequences from
different instances of the same predicted word type. This is
illustrated in Figure 2. An unsupervised term discovery (UTD)
system is applied to an unlabelled speech collection, discover-
ing pairs of word segments predicted to be of the same type.
These are then presented as input-output pairs to the ENCDEC-
CAE. Since UTD is itself unsupervised, the overall approach
is unsupervised.

For ENCDEC-CAE, a single training item consists of a pair
of sequences (X(a), X(b)). Each segment consists of a unique
sequence of frame-level vectors: X(a) = x

(a)
1 , . . . ,x

(a)
Ta

and

X(b) = x
(b)
1 , . . . ,x

(b)
Tb

. The loss for a single training pair is

`(X(a), X(b)) =
∑Tb

t=1 ||x
(b)
t − f t(X(a))||2, where X(a) is

the input and X(b) the target output. We found that it is crucial
to first pretrain the ENCDEC-CAE as a standard AE using the
loss in §2.1, before switching to the loss here.

The correspondence idea is not new—its application in
the encoder-decoder architecture is. In [31] it was used to
improve frame-level rather than segmental speech represen-
tations. Earlier [32] and more recent work [33] in domains
outside of speech have also used neighbours in the input fea-
ture space as model targets. Term discovery systems were also
used to provide training segments for a speech model in [22].
Although their systems are unsupervised, the intrinsic quality
of embeddings was not their direct focus, as is also the case
in [11,20]. Another study where ground truth segments are not
used is [24], although true phoneme boundaries are assumed.

3. EXPERIMENTS

3.1. Experimental setup and evaluation

We perform experiments on two languages, using the same
data as in previous zero-resource studies [3]. English training,
validation and test sets are obtained from the Buckeye cor-
pus [34], each with around 6 hours of speech. For Xitsonga we
use a 2.5 hour portion of the NCHLT corpus [35]. We use word
pairs discovered using the UTD system of [36]. On the English
training data, this system discovers around 14k unique pairs;
on the Xitsonga data, it discovers around 6k pairs. For com-
parison, we also extract a similarly sized set of ground truth

word segments from forced alignments of the English training
data. All speech audio is parametrised as static Mel-frequency
cepstral coefficients (MFCCs), i.e. D = 13.

Ultimately we want to use acoustic embeddings down-
stream in zero-resource speech applications. But here we want
to measure intrinsic quality without being tied to a particular
system architecture. We therefore use a word discrimination
task designed for this purpose [37]. In the same-different task,
we are given a pair of acoustic segments, each a true word,
and we must decide whether the segments are examples of
the same or different words. To do this using an embedding
method, a set of words in the test data (we use around 5k
tokens in both languages) are embedded using the specific
approach. For every word pair in this set, the cosine distance
between their embeddings is calculated. Two words can then
be classified as being of the same or different type based on
some threshold, and a precision-recall curve is obtained by
varying the threshold. The area under this curve is used as final
evaluation metric, referred to as the average precision (AP).

As a baseline embedding method, we use downsampling
by keeping 10 equally-spaced MFCC vectors from a segment
with appropriate interpolation, giving a 130-dimensional em-
bedding. This has proven a strong baseline in other work [24].
The same-different task can also be approached by using DTW
alignment between test segments, where the alignment cost of
the full sequences are used as a score for word discrimination.

All neural models are implemented in TensorFlow. For
all models we use an embedding dimensionality of M =
130, to be directly comparable to the downsampling base-
line. More importantly, although other studies consider higher-
dimensional settings, downstream systems such as [14] are
constrained to embedding sizes of this order. Neural network
architectures were optimised on the English validation data.
Our final ENCDEC models all have 3 encoder and 3 decoder
unidirectional RNN layers, each with 400-unit hidden repre-
sentations. We also considered bidirectional RNNs, but this
did not give improvements. Pairs are presented to the ENCDEC-
CAE in both input-output directions. Models are trained using
Adam optimisation [38] with a learning rate of 0.001. On the
English data, early stopping is used, but for Xitsonga valida-
tion data is not available so the models are simply trained for
100 epochs. We run all models with five different initialisations
and report average performance and standard deviations.

3.2. Results

Table 1 shows AP performance on test data for all the neu-
ral embedding approaches, the downsampling baseline, and
DTW alignment. All ENCDEC models here are trained on UTD
segments, yielding truly unsupervised results. The dimension-
alities of all the embeddings are also identical, M = 130.

ENCDEC-CAE outperforms all other embedding ap-
proaches in both languages. In English it outperforms its
closest competitor (ENCDEC-VAE) by roughly 29% relative
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Table 1. Word discrimination performance on test data. UTD
was used to provide training segments for the ENCDEC models.

Average precision (%)

Model English Xitsonga

ENCDEC-AE 24.8 ± 0.50 14.2 ± 0.30
ENCDEC-VAE 25.0 ± 0.20 11.4 ± 0.40
ENCDEC-CAE 32.2 ± 0.01 32.0 ± 0.02

Downsampling 21.7 13.6
DTW alignment 35.9 28.1

in AP, while for Xitsonga it achieves more than twice the AP
of ENCDEC-AE. In Xitsonga, ENCDEC-CAE also outperforms
DTW, which has access to the full uncompressed sequences.
This improvement is particularly notable since DTW is com-
putationally more expensive: embedding comparisons with
ENCDEC-CAE takes about 0.5 minutes on a single CPU core
while DTW takes more than 60 minutes parallelised over 20
cores. In previous studies where embeddings were reported to
outperform DTW, either ground truth word segments [18] or
higher-dimensional embeddings were used [24].

In Table 1, all ENCDEC models outperform downsampling
apart from the Xitsonga ENCDEC-VAE. But downsampling is
simple and does not require any training. In English, ENCDEC-
VAE performs similar to ENCDEC-AE. This is not surprising
since we had to weigh the reconstruction term in the VAE
loss relatively high to obtain reasonable AP scores during
validation. The poor performance in Xitsonga is in part due
to the absence of a validation set: model hyperparameters (to
which ENCDEC-VAE seem to be particularly sensitive) could
not be tuned and early stopping was not possible. More work
on ENCDEC-VAE is required to make definitive conclusions.

3.3. Further analysis

To quantify the penalty of using discovered instead of true
word segments, Table 2 shows performance on the English
validation data for the different ENCDEC models trained on

basically

because

columbus

education

exactly

probably

school

situation

something

sometimes

Fig. 3. t-SNE visualisations of acoustic word embeddings
produced by ENCDEC-CAE on unseen data.

Table 2. Performance on English validation data, with models
trained on ground truth, random and UTD segments.

Average precision (%)

Model Oracle Random UTD

ENCDEC-AE 26.2 25.5 25.7
ENCDEC-VAE 25.8 25.4 26.0
ENCDEC-CAE (non-init.) 46.9 - 19.0
ENCDEC-CAE 51.1 - 31.7

Downsampling —— 24.5 ——
DTW alignment —— 36.8 ——

different types of segments. The oracle column indicates AP
when models are trained on ground truth word segments ob-
tained from forced alignments. The random column shows AP
when training segments are sampled randomly from within
training utterances. ENCDEC-AE pays a small penalty when not
using true segments, while ENCDEV-VAE performs best with
UTD segments. ENCDEC-CAE cannot be trained on random
segments as it requires paired data. When using perfect in-
stead of discovered pairs, ENCDEC-CAE improves from 31.7%
to 51.1% in AP. This is also the best overall performance on
the English validation data—better than DTW. On the valida-
tion data here, downsampling yields performance similar to
ENCDEC-AE and ENCDEC-VAE, without requiring any training
segments. Row 3 shows that pretraining the ENCDEC-CAE is
essential as performance drops considerably without it.

Figure 3 shows t-SNE visualisations [39] of embeddings
from ENCDEC-CAE trained on UTD segments. Tokens of the
same type are mapped to similar regions, and acoustically sim-
ilar words such as ‘situation’ and ‘education’, or ‘something’
and ‘sometimes’ are located close to each other.

4. CONCLUSION

We have evaluated old and new unsupervised neural acous-
tic word embedding methods for the truly unsupervised
case where no word labels or boundaries are known. We
showed that the encoder-decoder correspondence autoen-
coder (ENCDEC-CAE) outperforms other approaches in two
languages. This model uses training pairs from a top-down
unsupervised term discovery (UTD) system. When perfect
segments are used, the ENCDEC-CAE also performs best
and consistently outperforms a full alignment-based model.
This indicates that the model could be even more effective
given improvements in UTD accuracy. We also proposed the
ENCDEC-VAE, a variational autoencoder over segments, but
this model did not give improvements. It could, however,
provide more explicit disentangled features [40], which we
did not consider here and will investigate in future work.

We would like to thank Ewald van der Westhuizen for helpful feedback,
and NVIDIA Corporation for sponsoring a Titan Xp GPU for this work.
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