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ABSTRACT

Hypernasal speech is a common symptom across several
neurological disorders; however it has a variable acoustic sig-
nature, making it difficult to quantify acoustically or percep-
tually. In this paper, we propose the nasal cognate distinc-
tiveness features as an objective proxy for hypernasal speech.
Our method is motivated by the observation that incomplete
velopharyngeal closure changes the acoustics of the resultant
speech such that alveolar stops /t/ and /d/ map to the alve-
olar nasal /n/ and bilabial stops /b/ and /p/ map to bilabial
nasal /m/. We propose a new family of features based on like-
lihood ratios between the plosives and their respective nasal
cognates. These features are based on an acoustic model that
is trained only on healthy speech, and evaluated on a set of
75 speakers diagnosed with different dysarthria subtypes and
exhibiting varying levels of hypernasality. Our results show
that the family of features compares favorably with the clin-
ical perception of speech-language pathologists subjectively
evaluating hypernasality.

Index Terms— speech, hypernasality, dysarthria, velopha-
ryngeal dysfunction, automatic speech recognition

1. INTRODUCTION

Hypernasality refers to the perception of excessive nasal res-
onance during speech production. It results from an inability
to properly modulate airflow between the nasal and oral cavi-
ties due to velopharyngeal dysfunction (VPD) and arises from
a cleft lip and palate, or dysarthria secondary to neurological
disorders such as Parkinson’s disease [1], amyotrophic lateral
sclerosis [2], Huntington’s disease [3], and ataxia [4].

Detecting and assessing hypernasality are complex tasks
that require inferring the ratio of resonances across the pha-
ryngeal, oral, and nasal cavities. A disproportionately high
amount of nasal resonance is regarded as atypical and hyper-
nasal. This presents a challenging estimation task, vulnerable
to co-modulating variables including word choice, the partic-
ular geometry of an individual’s resonating cavities, and other
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covarying dysarthria symptoms (e.g. vocal quality). This re-
sults in a highly nonlinear and complex mapping between the
percept and the actual acoustic nasal resonance [5], [6].

Current techniques for measuring velopharyngeal func-
tion in-clinic employ perception, imaging, and instrumen-
tation. The current state of the art is clinical perception of
hypernasality by trained speech-language pathologists [7],
however there is a growing body of work suggesting clinical
perception is susceptible to the co-modulating variables men-
tioned above and listener expertise [8]. Reliable perceptual
measures of hypernasality require evaluation from multiple
clinicians [9] or intensive training according to specific pro-
tocols [10]. Direct imaging of the velopharyngeal closing
mechanism can provide information about velopharyngeal
gap size and shape using X-Ray or multiview videofluo-
roscopy [11], however these are invasive techniques and not
common practice in-clinic. Nasalence is a score on a scale
from 0-100 measured by a nasometer worn over the face [12].
While nasalance shows moderate correlation with percep-
tual judgment of hypernasality [13], it requires a specialized
device and a trained clinician to be read and understood.

Existing work in assessing hypernasality directly from
speech signals is primarily focused on extracting formant
statistics or other spectral features (e.g. the spectral flattening,
amplitude reduction, and bandwith increases that accompany
nasalization [14], 1/3rd octave band analysis [15], and the
voice low tone to high tone ratio [16]). While these methods
have all demonstrated some effectiveness in measuring hy-
pernasality, the complex spectral signature of nasalization is
difficult to capture with a simple representation. There is also
a body of work on measuring nasality using machine learning
[17], [18], [19], but these methods are all trained on single-
disorder data, so it is difficult to assess if they learn acoustics
specific to hypernasality or other co-modulating variables.

In contrast to the existing work in hypernasality assess-
ment, and motivated by existing work on objective phone-
level intelligibility measures, we propose a more compre-
hensive acoustic representation that does not require disease-
specific training data. We observe that the unwanted nasal-
ization of phonemes characteristic of hypernasal speech can
make certain plosives sound more like nasal sonorants that
share the same place of articulation. To that end, we propose
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Fig. 1. High-level overview of the NCD feature system.

the nasal cognate distinctiveness (NCD) family of features.
We train an acoustic model on healthy English speech. We
calculate the feature values by evaluating the likelihood ra-
tio between the plosives and their respective nasal cognates.
These features compare favorably with clinical ratings of
hypernasality provided by speech-language pathologists for
data from 75 speakers diagnosed with different neurological
diseases (Parkinson’s disease, amyotrophic lateral sclerosis,
Huntington’s disease, and cerebellar ataxia).

2. NASAL DISTINCTIVENESS FEATURES

2.1. Motivation and Overview

A characteristic of hypernasal speech is the unintentional pro-
duction of “nasal cognates,” nasal sonorants sharing the same
place of articulation as certain voiced plosives, when produc-
tion of the corresponding plosive is intended. This transfor-
mation means that the voiced alveolar stop /d/ will sound
like the alveolar nasal /n/ and the voiced bilabial stop /b/
will sound like the bilabial nasal /m/. [20] Similarly, the un-
voiced counterparts of these stops /t/ and /p/ frequently are
present in phonetic environments where they are proceeded or
followed by vowels, or proceeded by nasal consonants [21],
which means they also can share a propensity to be mapped to
the same nasal cognates [20]. Predictable phenomena such as
this suggest that perceptually-motivated, phoneme-level ob-
jective measures of hypernasality are warranted.

Existing phoneme-level objective measures have been
developed targeting more general speech intelligibility as-
sessment, such as the Goodness of Pronunciation algorithm
(GoP) [22]. The GoP assesses the pronunciation of a speaker
on a phoneme-by-phoneme basis as the log ratio of the prob-
ability of the uttered phoneme segment given the correct
phoneme from an aligned transcript to the maximum across
all phonemes of the uttered segment given a phoneme,

GOP (p) =
∣∣∣ log

( P (O|p)
maxq∈QP (O|q)

)∣∣∣/|O|
where O is the observation with frame count |O|, p is
the transcript-determined phone, and Q is the full set of
phonemes in the language. These probabilities are assessed
using an automatic speech recognition (ASR) acoustic model
trained on healthy native speech. Similar approaches have
been used to measure intelligibility in dysarthric speech [23].

2.2. Feature Computation

In Fig. 1 we provide an overview of the proposed approach.
We assume that we have an input speech segment and corre-
sponding transcript for analysis. Furthermore, we assume that
the input utterances have several instances of the phonemes of
interest (/p/ /b/, /t/, /d/). Similar to the Goodness of Pro-
nunciation feature, the Nasal Cognate Distinctiveness feature
computation begins with an ASR acoustic model trained on
healthy speech. This acoustic model is used to both force-
align the speech to the transcript to sample the plosives and
estimate the likelihood ratios between the plosives and their
nasal cognates with which the NCD features are computed.
Finally, the individual instances of each phoneme are aver-
aged to generate average NCD features.1

2.2.1. Acoustic Model

To train our acoustic model, we extract a set of observation
feature vectors from each training speech sample. The in-
put speech sampling rate is 16 kHz. We analyze the speech
at a frame rate of 10 ms and denote the acoustic features
for frame i by Oi. For our implementation we used a tri-
phone model trained with a Gaussian Mixture Model-Hidden
Markov Model on 960 hours of healthy native English speech
data from the LibriSpeech corpus [24]. We use the Kaldi
toolkit training scripts for training the model. The input fea-
tures to the ASR model are 39-dimensional second order Mel-
Frequency Cepstral Coefficient (MFCC) with utterance-level
cepstral mean variance normalization and Linear Discrimi-
nant Analysis transformation (same approach as in [25]).

2.2.2. NCD Feature Computation

The NCD is formulated for phoneme p ∈ S = [/t/,/d/,/p/,/b/],
frame Oi ∈ O, the observation corresponding with p based
on forced alignment to the transcript,

NCD(p,O) = Σi log
( P (Oi|p)
P (Oi|cog(p))

)
/|O|

where cog(p) is a “cognate mapping function” that maps the
stops in the set S to their corresponding nasal cognate, and
|O| is the total number of frames in observation O.

The probabilities in the numerator and denominator of
the formula are assessed using the Viterbi alignments in the
ASR model. To assess the denominator probability the cog(p)
function is called first, swapping the given plosive with its
cognate in the triphone context.

Given a set of recordings of a speaker reading from a set
of transcripts, the four NCD features are evaluated as follows.
First, the transcripts are force-aligned at the phoneme level
using the ASR model. With this alignment the NCD(p) fea-
ture can be computed for each all phonemes p ∈ S in the input

1Code is available at https://github.com/michaelsaxon/ncd
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(a) /t/ (b) /d/

(c) /p/ (d) /b/

Fig. 2. Box plots for the NCD feature distribution separated
by nasality severity. The y-axis in each plot represents the
NCD feature value for the phoneme under consideration.

utterances. This produces a set of many output NCD values,
with each corresponding to an occurrence of one of the four
phonemes in consideration in the transcripts. The NCD val-
ues are then averaged within the four phonemes to return four
output features, NCD for /t/, /d/, /p/, and /b/.

3. RESULTS

The method was evaluated using a dataset of 75 speakers with
a variety of dysarthria subtypes exhibiting a range of hyper-
nasality severities. The dysarthria is secondary to Parkinson’s
disease (N=38), Huntington’s disease (N=6), amyotrophic lat-
eral sclerosis (N=15), and cerebellar ataxia (N=16). Each
speaker spoke five phonetically rich test sentences. The sen-
tences were: “the supermarket chain shut down because of
poor management”, “much more money must be donated to
make this department succeed”, “in this famous coffee shop
they serve the best doughnuts in town”, “the chairman decided
to pave over the shopping center garden”, and “the standards
committee met this afternoon in an open meeting.”

We evaluate the NCD features against clinical perception
of hypernasality, as measured by speech language patholo-
gists (SLPs). There is considerable evidence that the inter-
rater reliability between clinicians evaluating hypernasality is
susceptible to other co-modulating variables [9]. As a re-
sult, we recruit a group of 15 SLPs to asses each speaker’s
degree of nasality on a 1-7 scale and average their scores -
we use the average of the 15 clinical ratings as our ground
truth. The inter-rater reliability of the SLPs was moderate,
with a Pearson Correlation Coefficient of 0.66 and an aver-

age inter-clinician mean absolute error of 1.44 on the 7-point
scale. A group of 5 healthy control speakers, speaking the
same sentences was also included; all were assigned the min-
imum nasality score of 1.

3.1. Individual Feature Analysis

Figure 2 contains box plots for the four phoneme NCD fea-
tures. The speakers were divided into four groups based on
nasality severity for this analysis: control, mild, moderate,
and severe. To perform the separation the real range of non-
control assessed nasality was divided roughly in three, with
the mild nasality N ∈ [1.3, 2.7), moderate N ∈ [2.7, 4.1)
and severe N ∈ [4.1, 5.6].

The feature trends very convincingly move for the voice-
less phonemes /t/ and /p/, with the control and mild nasal-
ity speakers exhibiting the highest values of Nasal Cognate
Distinctness. The moderate nasality speakers then exhibit
lower feature values and the severe nasality speakers exhibit
the lowest. The means, medians, and quartiles for all of the
values decrease as nasality increases across groups. These
expected trends are not all exhibited in the voiced phonemes
/d/ and /b/, however. For both phonemes the means, medi-
ans, and quartiles hardly move at all or do not move together
between the mild and moderate nasality groups. For /b/, the
moderate nasality NCD feature range even spans the entire
range of values exhibited by all other groups. Despite these
inconsistencies, for all phonemes the NCD score completely
separates the control range from the severe nasality range.

3.2. Predicting the Nasality Score

Multiple regression analysis was used to test if the NCD mea-
sure for the four nasal cognates predicted the average clinician
nasality ratings. The results of the regression analysis indi-
cated that the four predictors explained 47% of the variance
(R = 0.687, F (4, 79) = 16.798, p < 0.05). It was found
that the NCD for /t/ significantly predicted the hypernasal-
ity rating (β = −0.316, p < 0.05), as did the NCD for /p/
(β = −0.278, p < 0.05).

Factor B SE B β p
/t/ -0.225 .093 -0.316* 0.018
/d/ -0.061 .043 -0.201 0.163
/p/ -0.077 .030 -0.278* 0.013
/b/ 0.000 .016 0.002 0.987
R2 0.473
F 16.798**

Table 1. Summary of Linear Regression Analyses for Vari-
ables Predicting Clinical Hypernasality Scores from the NCD
Measures (N=80). *p < 0.05, **p < 0.001

Figure 3 shows model-predicted nasality in Table 1
against the SLP-assessed clinical hypernasality measure.
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Fig. 3. Output of the linear regression model predicting nasal-
ity using /t/, /d/, /p/, and /b/ as shown in Table 1.

3.3. Discussion

The NCD features are formulated as a log probability ratio
between the expected class of a given transcript plosive and its
nasal cognate. Increasingly positive values correspond with a
higher confidence that the speaker has correctly articulated
the plosive rather than its nasal cognate, and values closer to
zero or negative represent plosives that sound more like their
nasal cognate than the intended stop. This directionality is
exhibited as expected in the phoneme-by-phoneme analysis
of the feature, where across speaker classes the NCD of a
given phoneme decreases as nasality increases.

Figure 2 shows that the NCD features very clearly sepa-
rate the control and severe nasality groups with all phonemes.
However, for the voiced phonemes /d/ and /b/ the moderate
and mild means and medians are close and the quartile ranges
overlap considerably. Performance is worst for /b/, which
exhibits both high cross-group overlap of the quartile ranges
and insignificance as a predictor of the subjective hypernasal-
ity scores in the multiple regression analysis.

When considering these inter-phone performance incon-
sistencies, differences in the phonetic environments in which
the test phonemes appear are noteworthy. In the five test sen-
tences, /t/ appears 18 times, /d/ 9 times, /p/ 6 times and
/b/ only 3 times. Of these appearances, /t/ has 8 word-
internal appearances, 7 word-final appearances, and 3 word-
initial appearances. The phoneme /d/ has 5 word-initial ap-
pearances, 3 word-internal appearances, and 1 word-final ap-
pearance. The phoneme /p/ has 4 word-internal appearances
and 2 word-initial appearances, and /b/ exclusively has 3
word-initial appearances. It is likely that these disparities in
overall occurrence and word-internal occurrence play an im-
portant role in explaining the performance disparity.

Additionally, it is important to note that the NCD features
are intended to assess a physical phenomenon, the realized
allophones, not the underlying phonemes themselves. The

phonetic transcriptions provided for HMM-based ASR sys-
tems fall somewhere between broad phonetic transcriptions
and allophonic narrow transcriptions, allowing for possible
confusion scenarios. For example, a /t/ may be realized in
English as [t], [R], or [P] depending on phonetic environment.
All three could be compared to [n] in the NCD model even
though the glottal stop [P] is unaffected by VPD and shares
no place of articulation with [n].

The NCD features tend to be high-variance because they
require reliable phoneme-level alignment to compute; higher
frequency phonemes exhibit reduced variability through aver-
aging. Accordingly, in this study the more frequent phonemes
are more useful predictors of hypernasality. This suggests that
future datasets to evaluate methods like NCD should include
a higher frequency of plosive consonants balanced across the
categories, in consistent environments in which the correct al-
lophones are reliably produced.

4. CONCLUSION

In this paper, we proposed the nasal cognate distinctiveness
features as an objective and noninvasive proxy for hypernasal
speech. The features are motivated by the simple observation
that alveolar stops /t/ and /d/ map to the alveolar nasal /n/
and the bilabial stops /p/ and /b/ map to bilabial nasal /m/
when the energized column of air is shunted into the nasal
passage during speech production. The feature is measured
by first training an acoustic model on healthy speech and, for
a test speaker, evaluating the likelihood ratio between the plo-
sives and their respective nasal cognates. For healthy speak-
ers that exhibit no signs of hypernasality, this ratio is large
and decreases with increasing levels of hypernasality. This
is confirmed on speech samples from 75 speakers diagnosed
with different dysarthria subtypes and exhibiting varying lev-
els of hypernasality. The results show that the features are
strongly correlated with clinical perception.

As we saw in Fig. 2, some of the features are variable.
Future work will focus on characterizing and mitigating this
variability. This mitigation will require collecting samples of
disordered speech that contain a more balanced representation
of the phonemes under evaluation, enabling more adequate
representation of /b/, /d/, and /p/, and allowing similar anal-
ysis of /k/, /g/, and their cognate, /N/. This study has shown
that standard phonetically diverse sentences are suboptimal
for nasality assessment tasks. Future participants should be
asked to produce sets of utterances that contain multiple at-
tempts at the precise allophones that have nasal cognates.

In addition, alignment of the speech at the phoneme level
can be challenging for speech from speakers with impaired
articulation. To that end, in the future we will investigate in-
tegrating these ASR-based, alignment-reliant methods along-
side new, strictly acoustic methods for hypernasality estima-
tion that do not rely on alignment. Future work will more di-
rectly target predication of the SLP-assessed nasality ratings.
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