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ABSTRACT
Telephone speech is one of the degradations involved in building
speech systems in practical environments. The potential use of the
speech systems depends on the speech analysis algorithms that can
handle different acoustic variations and degradations often found in
the human speech communication. Detection of epochs/glottal clo-
sure instants (GCIs) is typically required in such analysis stages. In
this paper, the effect of telephone channel speech on the accuracy of
detection of epochs using state-of-art epoch extraction methods is in-
vestigated. Epoch is the instant of significant excitation to the vocal
tract system in voiced speech. Most of the existing epoch extraction
algorithms are shown to perform excellently well on the speech data
collected under lab environment. The efficiency of these algorithms
for the analysis of telephone quality speech is quantitatively stud-
ied and the strengths and weaknesses of the methods are discussed
here. The methods are evaluated on six large databases containing
speech and simultaneous EGG recordings as the ground truth. The
state-of-art epoch extraction algorithms considered in this study for
comparison are: ZFF, YAGA, DYPSA, SEDREAMS, SE-VQ and
MMF. The performance of the algorithms is evaluated in terms of
both reliability and accuracy measures.

Index Terms— Speech analysis, Excitation source, Epochs,
Glottal Closure Instants, Telephone channel speech.

1. INTRODUCTION

The objective of this study is to examine the robustness of the state-
of-art epoch extraction algorithms in one of the degraded environ-
ment namely telephone channel speech. Since this is the mostly
used practical environment in daily life for speech communication,
methods of detecting epochs/glottal closure instants (GCIs) is es-
sential for various speech applications. Speech processed through
telephone channel is one of the major degradation involved in devel-
oping speech systems. In this work, the effect of telephone channel
on epoch extraction methods is investigated.

Epoch is the instant of significant excitation to the vocal tract
system during the production of voiced speech and it takes place
around the glottal closure. Identification of epoch locations plays
a crucial role in many speech processing applications such as
speech modification [1], excitation source modeling [2], inverse
filtering [3, 4], joint optimization in concatenative speech synthe-
sis [5], speech pathology [6, 7], etc. Apart from above applications,
the high SNR property of the GCI was used in applications like
glottal activity detection [8], pitch tracking [9, 10], formant fre-
quencies [11], analysis and detection of phonation types [12, 13]
and emotions [14, 15], speaker recognition [16], speech enhance-
ment [8], multi-speaker separation, identification of number of

speakers from multi-speakers data [17] etc. Due to wider range of
applications, GCI detection has received a considerable amount of
research attention. From the studies in [18], it was observed that
most of the epoch detection methods were shown to provide good
accuracy on the speech data collected in the lab environments. Also,
some attempts were made to see the effectiveness of these methods
for additive noise degraded conditions [19–23]. However, there are
not many attempts in GCI detection for the degraded conditions like
telephone quality speech.

Due to impulse-like excitation of glottal closure, the SNR of the
speech signal is high in the region around the epochs. Hence, it is
possible to enhance the speech by exploiting the characteristics of
speech signals in the regions around the epochs [8]. Also, it is ob-
served that features derived around epochs provide complementary
information to the existing spectral features [16]. In the human per-
ception also, the instants of significant excitation plays an important
role. It is because of the epochs in speech, human beings able to
perceive and process the distant speech, even though spectral com-
ponents of the signal suffer an attenuation. In the whispered voice,
we may not be able to get the message from a distance of 10 feet
or more due to absence of epochs [24]. Human beings are able to
perceive these microlevel events without much effort in extracting
the information from speech even under the degradations such as
noise, reverberation and channel variations such as telephone qual-
ity speech. Development of speech systems in practical environment
gained a special interest in recent years in order to enable access to
voice-based services. Speech processed through telephone channel
is one of the major degradation involved in building the speech sys-
tems in practical environment. In this work, the effect of telephone
quality speech on epoch extraction is assessed. The quality of speech
in the case of telephone speech is effected by the bandwidth of the
telephone channel. Telephone channel can be approximated by a
bandpass filtering in the range of 300 Hz to 3400 Hz. The character-
istics of the filter varies from 0-300 Hz, 300-3400 Hz and 3400-4000
Hz.

Epoch extraction: A Review In this section, a brief discussion
of the key features of the epoch extraction methods is presented.
The approaches for detecting epochs can be broadly classified into
three. First approach is based on processing of the excitation signal
(after source-filter decomposition) for epoch detection. The second
approach involves directly processing of the speech signal based on
the properties of the impulse-like excitation of epoch. The methods
in the third approach uses both the excitation signal and speech sig-
nal. In this, excitation signal is used to accurately locate the epochs.

The methods in the first approach rely on the excitation signal
derived from the speech waveform after removing the predictable
portion and this is usually carried out by performing linear predic-
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tion (LP) analysis. The large error value seen in the LP residual
within a pitch period is supposed to indicate the epoch location.
However, identification of unambiguous epoch locations from LP
residual is difficult due to random polarity of residual around epochs.
To overcome this Hilbert envelope of LP residual was proposed in
[25]. Some methods also uses Gabor filtered or center of gravity of
Hilbert envelope of LP residual to identify epoch locations [26]. Re-
cently in [27], an integrated LP residual (ILPR) was used as a pre-
processing signal and epoch candidates were selected by detecting
transients in ILPR using nonlinear temporal measure called as plo-
sion index. Some methods uses the group delay function of LP resid-
ual to locate epochs precisely [26,28]. However, it was observed that
group delay based methods gives large number of false alarms. To
reduce this effect, a dynamic programming based technique is used
for selecting appropriate epoch candidates [29]. Instead of LP resid-
ual, some methods uses the glottal flow waveform to locate GCIs.
YAGA is one such method [30], which uses the glottal flow wave-
form, wavelet transform, group delay and dynamic programming.
Also, recently a method was proposed which uses the glottal flow
waveform signal with the time domain criteria for detecting GCIs by
forward-backward algorithm in [20].

The methods in the second approach uses the properties of the
impulse-like excitation of epoch present in the speech signal. Zero
frequency filtering (ZFF) is one such method which exploits the
nature of the impulse-like excitation by filtering the speech signal
around 0 Hz [24]. The lines of maximum amplitude (LoMA) is an
another method in this category which uses the time-scale represen-
tation to locate the epochs [2]. The idea in this method is that, the
discontinuities in speech (such as GCIs or GOIs) are reflected as
amplitude maxima at each scale of wavelet transform. An optimal
LoMA is computed within a pitch period using a dynamic program-
ming to locate GCIs. In [19], a nonlinear formalism, namely micro-
canonical multiscale formalism was used to highlight the impulses
present in the speech signal directly.

The methods in the third category uses the speech signal to iden-
tify the possible GCI locations in a certain interval, and then discon-
tinuities in excitation signal was used to precisely locate the GCIs.
SEDREAMS is one such method [18], which uses the mean based
signal for finding the possible GCI locations in an interval and then
an LP residual is inspected in that to detect accurate location. A
modified version of SEDREAMS was proposed in [31] for handling
GCI detection from various voice qualities. This method uses dy-
namic programming and post-processing techniques in addition to
SEDREAMS method.

The present study investigates the strengths and weaknesses of
the state-of-art epoch extraction methods in processing one of the
practical environment data, namely telephone quality speech. More
details of the epoch extraction methods, and the epoch-based analy-
sis of speech processing can be found in [8, 18, 32].

The organization of the paper is as follows. Section 2 briefly
describes the implementation details of the state-of-art epoch extrac-
tion algorithms used for comparison in this study. Section 3 de-
scribes the speech databases used and details of the experimental
protocol, which includes the ground truth and evaluation metrics.
The results of the experiments are presented in Section 4 along with
their strengths and weaknesses. Finally, Section 5 gives a summary
of the study.

2. METHODS FOR EPOCH EXTRACTION

The following six state-of-art epoch extraction algorithms are con-
sidered in this study. They are: zero frequency filtering (ZFF),

Speech Event Detection using the Residual Excitation And a Mean-
based Signal (SEDREAMS), SEDREAMS-voice quality (SE-VQ),
dynamic programming phase slope algorithm (DYPSA), yet another
GCI algorithm (YAGA) and microcanonical multi-scale formalism
(MMF) [18, 19, 24, 29–31]. A brief implementation details of each
of the chosen methods are given below.

2.1. ZFF Algorithm

The epochs are detected in this method by directly exploiting im-
pulsive property of the epoch present in the speech signal. The zero
frequency filtering (ZFF) technique [24] is based on the observation
that impulse-like excitation at GCIs have an effect across all frequen-
cies. In this method, the differenced speech signal is passed through
a cascade of two ideal zero-frequency resonators (ZFRs). The re-
sulting signal grows/decays approximately as a polynomial function
of time. The trend removed signal is called as zero-frequency fil-
tered signal and the instants of negative-to-positive zero crossings
(NPZCs) correspond to the epochs for positive polarity speech sig-
nal [33, 34].

2.2. SEDREAMS Algorithm

In this method, the epochs are detected using both the excitation
signal and speech signal. The Speech Event Detection using the
Residual Excitation And a Mean-based Signal (SEDREAMS) [18]
algorithm uses a mean based signal (which is obtained by calculating
the mean of the sliding window whose length is 1.75 times average
pitch period over the speech signal) and LP residual. In this, the
first step determines the short intervals of GCIs presence using mean
based signal and in the second step, the accurate GCIs are located by
finding the largest discontinuity in the LP residual within those short
intervals.

2.3. SE-VQ Algorithm

This method also uses both the excitation signal and speech signal in
order to locate epochs. SE-VQ is a modified version of SEDREAMS
algorithm, which is proposed to handle various voice qualities. Apart
from the steps in SEDREAMS, the modifications involves applying
a dynamic programming method (to select optimal path on GCI lo-
cations) and a finer post-processing to remove false positives, while
at the same time not removing true positive GCIs.

2.4. DYPSA Algorithm

This method only uses the excitation signal to locate the epochs. The
dynamic programming phase slope algorithm (DYPSA) [29] uses the
LP residual of the speech signal. In this method, firstly zero cross-
ings of the phase slope function calculated on the LP residual was
used to obtain appropriate GCI candidates. And then, a phase slope
projection technique was used to recover candidates for which the
phase slope function does not include zero crossings. In order to
identify true epochs by reducing the effect of false candidates, a dy-
namic programming was used by minimizing various cost functions.
The cost function consists of five elements, they are: inter-pulse sim-
ilarity, pitch deviation, costs derived from the projected phase slope,
normalized energy values and deviations from an ideal phase slope
function. Each of the five elements are weighted with constant val-
ues.
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2.5. YAGA Algorithm

This method (yet another GCI algorithm (YAGA) [30]) uses the ex-
citation signal (glottal flow waveform) to locate the epochs. The
method combines various approaches used in other GCI detection
methods, such as: wavelet analysis, group delay function and M-best
dynamic programming. In order to highlight the discontinuities in
the glottal flow waveform, the multi-scale product of the stationary
wavelet transform is used and then the discontinuities are detected
using negative going zero crossings of the group delay function. The
falsely detected candidate GCIs are then removed using a similar
M-best dynamic programming approach as is used in DYPSA algo-
rithm [29]. YAGA also uses similar cost elements of DYPSA, with
modification of the inter-pulse similarity cost and an additional ele-
ment for distinguishing GCIs and GOIs.

2.6. MMF Algorithm

This method directly exploits the impulse-like discontinuity present
in the speech signal using a nonlinear formalism. The method is
based on the approach of microcanonical multi-scale formalism
(MMF) [19]. It relies on the precise estimation of multi-scale pa-
rameter called as singularity exponent at each sampling instant in
the time domain. The singularity exponent parameter quantifies the
degree of signal singularity at each sample from a multi-scale point
of view. The subset of samples with lowest singularity exponent
values points towards the GCIs.

In all these methods, the main challenge lies in the detection of
one GCI for one pitch period or glottal cycle, which lies closer to the
actual GCIs.

3. EXPERIMENTAL PROTOCOL

The robustness of epoch extraction algorithms are examined for
bandwidth degradation as in telephone quality speech. The per-
formance of all the six algorithms on simulated telephone qual-
ity speech (as in [35, 36]) is validated, as there are no databases
available which consists of actual telephone channel speech with
simultaneous EGG recordings. The telephone channel is simulated
as a bandpass filter with passband of 300-3400 Hz using an infinite
impulse response filter implementation available in [37] and its fre-
quency response is shown in Fig. 1. The clean speech data is filtered
through the simulated telephone channel to obtain telephone quality
speech.

3.1. Speech Material and Ground Truth

The six state-of-art methods are evaluated on six large databases
containing speech and simultaneous EGG recordings as the ground
truth. Among these, first three databases are from CMU ARCTIC
database [38]. These databases were collected for the purpose of
developing speech synthesis systems. Each of these three databases
consists of around 1132 phonetically balanced English sentences,
spoken by a single speaker, they are: BDL (US male), JMK (US
male) and SLT (US female). In the fourth database, a set of non-
sense words containing all phone-phone transitions in English were
recorded and is referred as RAB database (spoken by the UK male
speaker). The fifth database is the KED TIMIT database spoken
by a US male speaker. All these five databases are available on
the Festvox webpage [38, 39]. The sixth database is the APLAWD
database [30], which contains ten repetitions of five phonetically bal-
anced English sentences spoken by 5 male and 5 female speakers
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Fig. 1. Frequency response of the simulated telephone channel (for
sampling frequency of 8 kHz).

Table 1. Summary of the databases used for validation.
Database Speaker(s) Duration (approx.)
BDL 1 male 54 min.
JMK 1 male 55 min.
SLT 1 female 54 min.
KED 1 male 20 min.
RAB 1 male 29 min.
APLAWD 5-male, 5-female 20 min.
Total 9-male, 6-female 232 min.

and is available in [40]. In all these databases, the EGG and speech
signals sampled at 8 kHz are considered for evaluation. Reference
epoch locations were extracted by finding the negative peaks in the
dEGG signal. The EGG and speech signals were aligned to compen-
sate the larynx-to-microphone delay. The epoch extraction methods
are validated only on the voiced segments as epochs are meaningful
only for voiced segments. The total data collectively consists of 9
male and 6 female speakers. The description about the databases is
summarized in Table 1.

3.2. Evaluation Measures

The measures defined in [29] are used to evaluate the performance
of the epoch extraction algorithms. The first three measures: iden-
tification rate (IDR), miss rate (MR) and false alarm rate (FAR) are
called as reliability measures, and the remaining two: identification
accuracy (IDA) and identification rate within ±0.25 ms (IDR within
±0.25 ms) are called as accuracy measures.

4. RESULTS AND DISCUSSION

To examine the effect of telephone quality speech on epoch ex-
traction algorithms, the evaluation metrics were calculated for each
database in both male and female speech separately. The obtained
results are presented in Table 1 (for each database in both genders)
and Table 2 (averaged across all databases). From Table 1, it can
be seen that the performance of the epoch extraction algorithms
is drastically lower for all the databases (which has larger FAR)
in terms of both IDR and IDR within ±0.25ms. It can also be
observed from Tables 1 and 2 that, the DYPSA and MMF algo-
rithms are consistently giving higher performance for almost all
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Table 2. Performance comparison of the six methods of GCI detec-
tion for the six databases. IDR - Identification rate, MR - Miss rate,
FAR - False alarm rate, IDA - Identification accuracy (σ) in ms, IDR
within ±0.25 ms (%).

Database Method IDR% MR % FAR % IDA (ms) IDR(±0.25 ms)

BDL(male)

ZFF 50.73 0.12 49.15 0.70 19.98
YAGA 49.78 0.97 49.25 1.11 22.42
DYPSA 91.59 2.13 06.28 0.48 82.71
SEDREAMS 72.49 0.12 27.40 0.47 58.55
SE-VQ 87.43 2.77 09.80 0.86 16.75
MMF 94.04 3.33 02.63 0.49 71.02

JMK(male)

ZFF 94.20 1.55 04.25 1.06 26.72
YAGA 63.72 2.14 34.14 1.25 09.87
DYPSA 88.72 1.97 09.31 0.70 64.25
SEDREAMS 98.60 0.33 01.06 0.60 65.08
SE-VQ 87.60 4.11 08.30 1.20 04.30
MMF 94.17 2.65 03.18 0.68 53.22

SLT(female)

ZFF 98.91 0.05 01.04 0.35 65.82
YAGA 71.01 8.06 20.93 1.10 21.21
DYPSA 93.43 2.89 03.69 0.33 64.19
SEDREAMS 95.44 2.77 01.79 0.28 63.57
SE-VQ 84.34 5.98 09.68 0.87 09.90
MMF 91.87 7.09 01.04 0.37 61.35

KED(male)

ZFF 21.79 0.07 78.14 0.51 21.89
YAGA 55.66 0.91 43.42 1.07 33.44
DYPSA 96.03 1.14 02.83 0.32 87.01
SEDREAMS 35.85 1.53 62.62 0.97 38.59
SE-VQ 69.51 0.71 29.78 0.96 06.06
MMF 96.65 1.53 01.82 0.33 79.90

RAB(male)

ZFF 53.98 0.22 45.81 1.37 26.64
YAGA 18.18 2.70 79.12 1.21 13.62
DYPSA 76.74 1.53 21.73 0.50 74.51
SEDREAMS 61.64 0.20 38.16 0.48 69.24
SE-VQ 65.39 3.47 31.14 1.03 08.14
MMF 73.61 1.75 24.64 0.70 75.33

APLAWD(male)

ZFF 72.51 0.03 27.46 0.72 22.99
YAGA 57.95 0.66 41.39 1.09 18.30
DYPSA 89.52 1.39 09.08 0.48 78.83
SEDREAMS 89.60 0.06 10.34 0.48 64.86
SE-VQ 84.33 1.95 13.72 0.98 16.60
MMF 91.49 2.72 5.78 0.54 66.07

APLAWD(female)

ZFF 77.45 0.05 22.54 0.31 64.89
YAGA 66.39 1.01 32.60 0.97 31.85
DYPSA 77.82 1.41 20.77 0.38 79.82
SEDREAMS 75.90 0.06 24.04 0.37 57.99
SE-VQ 72.42 1.12 26.46 1.08 05.36
MMF 80.77 7.21 12.03 0.61 58.86

the databases compared to other four methods. In both of these
algorithms, DYPSA is better than MMF in most of the cases. Also,
it was observed that in comparison with various algorithms, MMF
offers the good reliability and DYPSA offers the good accuracy,
with consistency.

The performance of the ZFF method in terms of IDR and IDR
within ±0.25 ms is very low for the male speakers data (except for
JMK), whereas for the female speakers data, the performance is rela-
tively high. The performance of the YAGA method is low in terms of
IDR and IDR within ±0.25 ms for all the databases including male
and female speakers. The SEDREAMS method gives good IDR and
IDR within ±0.25 ms for some databases, such as JMK, SLT and
APLAWD (especially male speaker). However, the performance of
the method is poorer for other databases. It is interesting to note that,
even though SEVQ method is a modified version of SEDREAMS, its
performance is significantly lower especially in terms of IDR within
±0.25 ms compared to SEDREAMS. Whereas IDR is improved in
some databases such as BDL, KED and RAB (slightly) compared
to SEDREAMS. The IDR of SEVQ algorithm is reduced in some
cases such as JMK, SLT and APLAWD. It can be seen that, there
is a consistency in the performance of the DYPSA and MMF meth-
ods in terms of IDR and IDR within ±0.25 ms (except for the RAB
speaker, which has lower IDR) for both the male and female speak-
ers data. It is interesting to note that, the performance of these two
methods (DYPSA and MMF) is relatively lower in clean speech data
compared to other four methods (see [18,19]). But this is not case for
telephone quality speech. Infact, these two methods are performing
better than all the other four methods.

From the results in Tables 1 and 2, it is to be noted that, the

Table 3. Performance comparison averaged over all databases for
the six algorithms of epoch extraction.

Method IDR% MR % FAR % IDA (ms) IDR(±0.25 ms)
ZFF 67.08 0.30 32.63 0.72 35.56
YAGA 54.67 2.35 42.98 1.11 21.53
DYPSA 87.69 1.78 10.53 0.46 75.90
SEDREAMS 75.65 0.72 23.63 0.52 59.70
SE-VQ 78.72 2.87 18.41 0.99 9.59
MMF 88.94 3.75 7.30 0.53 66.53

methods that uses the smoothed signal (such as zero frequency
filtered signal in ZFF method, mean based signal in SEDREAMS
and SEVQ) for detecting GCIs gives lower performance in some
databases and its effect is varying for databases. This is mainly due
to the spurious zero crossings of the smoothed signal which leads
to large number of false alarms. It is interesting that, the SEVQ
method performance is lower compared to SEDREAMS method.
The decremental performance in this method may be due to the
cost functions/thresholds involved in the method and also due to
post-processing technique. It can be seen that, YAGA method has
larger number of false alarms, which leads lowered performance.
One reason for this might be due to the inaccurate estimates of
glottal source waveform. The other reason might be the effect of the
cost functions/thresholds involved in dynamic programming which
are optimized for clean speech data. The performance in the case
of DYPSA and MMF methods consistently higher in most of the
cases. The reason for the good performance of DYPSA method
might be due to its depends on the LP residual signal to locate the
epochs and the higher performance of MMF method may be due to
its exploitation of impulse-like discontinuity directly from the time
domain signal.

5. SUMMARY AND CONCLUSION

A quantitative comparison of six state-of-art epoch extraction algo-
rithms for automatic detection of epochs from the telephone quality
speech was investigated. The algorithms considered in this study
are: ZFF, YAGA, DYPSA, SEDREAMS, SE-VQ and MMF. The
performance of these algorithms was assessed on simulated tele-
phone quality speech of six large databases which contains 9 male
and 6 female speakers data. From the experimental results, it was
observed that the performance for telephone quality speech is de-
graded heavily for all the methods. It was also observed that, ZFF
algorithm seems to provide good performance for female speech,
but the method performance is reduced drastically in male speech
especially in IDR within ±0.25 ms even though for some speakers
IDR is high (such as JMK). Similar the case in SEDREAMS method
also. YAGA method performance is poorer in both male and fe-
male speech. Among the six methods, it appears that DYPSA and
MMF methods seems to work well in most of the cases even though
the performance of the methods are lower compared to clean speech
(can be seen from results in [18,19]). In all these methods, the effect
is mainly due to the bandwidth of the telephone channel involved,
which makes the impulse-like discontinuity as less evident. The ex-
perimental results clearly display that there is a clear lack and need
for more reliable and accurate algorithms of epoch extraction for
practical degraded data like telephone quality speech.
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