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ABSTRACT

This paper describes PyHTK, which is a Python-based library and
associated pipeline to facilitate the construction of large-scale com-
plex automatic speech recognition (ASR) systems using the hidden
Markov model toolkit (HTK). PyHTK can be used to generate so-
phisticated artificial neural network (ANN) models with versatile ar-
chitectures by converting a compact configuration file defining the
ANN, into the form used by HTK tools, as well as supporting a range
of capabilities to train and test ANN models. The ASR pipeline is
divided into multiple steps, which can be arranged and customised
for different ASR data sets, and allows for both step-by-step and
fully automatic end-to-end operation. PyHTK is integrated with
HTK 3.5.1 which includes an expanded range of ANN layer types
and very flexible ways to connect them, together with capabilities
for ASR training and testing. Some example systems are included to
illustrate the flexibility and performance achievable.

1. INTRODUCTION

HTK is an open-source research toolkit for automatic speech recog-
nition (ASR), based on the C programming language, which has
been continuously developed for almost three decades and has been
available for free download since September 2000 [1]. During its
long history, HTK has integrated many important hidden Markov
model (HMM)-based techniques, such as phonetic decision trees for
HMM state-tying [2], transform-based speaker adaptation [3], and
lattice-based discriminative sequence training [4], into a common
framework and has been widely used for both research and com-
mercial ASR system development. HTK 3.5 [5, 6], was released in
late 2015, which included native support for artificial neural network
(ANN)-based acoustic models. However, in comparison to other
ASR [7, 8] and deep learning toolkits [9-11], HTK 3.5 lacked ways
to configure ANN models in a user-friendly fashion as well as a com-
plete publicly available script pipeline that can perform large-scale
ASR system construction automatically’.

Reproducibility has long been an issue in ASR research, as prac-
tical ASR systems depend on complex pipelines and hyperparame-
ters that are too detailed to fully list in a paper. The Kaldi toolkit [7]
made a crucial contribution to reproducibility, by releasing alongside
the source code for key speech processing functions, a collection of
bash pipeline scripts for automatic ASR system construction, which
are often specific and customised for each distinct speech data set.
In mainstream deep learning toolkits, such as TensowFlow and Py-
Torch [10, 11], users can simply define model structures and training

Many current & previous members of the CUED speech team have con-
tributed to HTK. Mark Gales developed many aspects of a CUED-internal
automatic ASR pipeline primarily based on shell scripts.

Note that HTK has always included small-scale recipes and scripts that
illustrate the main use of the tools.
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configurations via a simple Python script. This can then be shared
for improved dissemination of the work.

This paper introduces PyHTK, a new Python-based function li-
brary and ASR pipeline for HTK, that has been developed at the
Cambridge University Engineering Department (CUED) since 2015.
Instead of wrapping the original C library with Python, PyHTK im-
plements a set of new Python functions based on NumPy and SciPy,
which covers many of the procedures used in ASR construction, and
can interact with existing HTK tools. Experience has shown that the
use of PyHTK greatly reduces the difficulty of both development and
deployment of HTK. PyHTK also facilitates a major revision of the
internal ASR pipeline scripts for HTK, some of which had been in
use for many years and had been used for the construction of a wide
range of HTK-based systems. A small set of Python scripts based on
clearly defined training and test steps was created based on PyHTK.
The pipeline can be customised for each particular task using task-
specific configuration or config files, and can be used for ASR sys-
tem construction in a step-by-step fashion or for a complete end-to-
end build (from initial data to final system). Furthermore, HTK 3.5.1
has been developed with new support for more types of ANN layer,
which includes support for long short-term memory (LSTM) [12]
models, gated recurrent units (GRUs) [13], convolutional neural net-
works (CNNs) [14], a subsampling layer, a Gaussian mixture model
(GMM) layer [15, 16], and a self-attentive layer [17]. In addition,
the methods by which multiple vectors within an ANN are combined
was extended. Previously only concatenation was supported for mix-
ing features from multiple sources, whereas HTK 3.5.1 and PyHTK
support additional mechanisms which in turn allow for a general use
of residual connections, gating, and attention. Numerous capabilities
for training and testing were also added to HTK, including various
approaches to stochastic gradient descent (SGD), maximum likeli-
hood (ML) sequence training, multi-channel raw waveform features
[18], and lattice rescoring with LSTM-based language models [19].

The paper is organised as follows. Section 2 reviews the ANN
model support in HTK 3.5, while the new features of HTK 3.5.1 are
explained in Sec. 3. Section 4 introduces the design of the PyHTK
library and Sec. 5 describes the ASR pipeline. Experiments on ex-
ample systems are presented in Sec. 6, followed by conclusions.

2. GENERIC ANN SUPPORT IN HTK 3.5

HTK supports many HMM-based speech processing techniques cov-
ering the entire ASR pipeline. The integration of additional modules
(C libraries) for ANN acoustic models in HTK 3.5 enabled the use
of all previously established approaches in the design of ANN based
ASR systems. The HTK tools for GMM-HMM systems, e.g. for
alignment and decoding, were extended to support ANN-HMMs.

In a similar fashion to other deep learning and ASR toolkits,
HTK 3.5 supports a range of ANN model structures that are equiv-
alent to any directed cyclic graph by viewing each ANN layer as a
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graph node. In HTK 3.5 each ANN layer had to be a fully-connected
(FC) layer, therefore only allowing deep feed-forward neural net-
works (DNNs), time-delay neural networks (TDNNs) and simple re-
current neural networks (RNNs). HTK implements this function via
a structure called a feature mixture that is used to generate the in-
put vector to a layer. A feature mixture can consist of any number
of feature elements, where each of them is defined as the concate-
nation of vectors from the same source with different context shifts.
The source of a feature element can be either input acoustic or aug-
mented features, or the output values of an ANN layer. The term
context shift refers to an integer indicating the time-step difference
to the current time. For example, a TDNN can be implemented as a
list of FC layers, where the feature mixture for each layer has a sin-
gle feature element whose source is the directly preceding layer and
the set of context shift values has multiple integers (e.g. {-1,0,1}). In
order to use both CUDA and Intel MKL library functions to speed up
matrix and vector operations, ANN layer parameters are organised as
generic matrices and vectors, which can be used with both CPU and
GPU support. These small parameter units allow for a light-weight
speaker adaptation mechanism, which works by swapping speaker
dependent parameters (matrices/vectors) according to speaker ids.

Error back propagation (EBP) with SGD is used as the standard
optimisation approach in HTK 3.5 with many learning rate sched-
ulers and gradient refinement techniques. Both frame level criteria,
such as cross-entropy (CE) and minimum squared error, and lattice-
based discriminative sequence criteria, such as maximum mutual in-
formation (MMI) and minimum phone error (MPE), are included.
To implement these training criteria effectively, both frame and utter-
ance level data shuffling approaches are needed. A multi-functional
data cache was implemented for data shuffling with minimum I/O
cost by pre-loading the data into the memory.

3. NEW FEATURES IN HTK 3.5.1

This section presents new features of HTK 3.5.1 which mainly be-
long to two categories: improved support for more complex deep
ANN models and extra capabilities for training and testing.

3.1. Extended Feature Mixture and New ANN Layers

As reviewed in Section 2, given an ANN model with a static graph
based architecture, HTK uses feature mixtures to define the com-
position of the input to each ANN layer as well as the connectivity
among all layers. In HTK 3.5, only a concatenation operation was
available to combine the component vectors from the feature ele-
ments to produce the mixed vector used as the input to the layer. In
HTK 3.5.1, the feature mixture is extended to enable more types of
operations for component vector combination. The currently sup-
ported operations are summarised below:

1. Concatenation: This is typically used for RNNs and TDNNs.

2. Addition: Element-wise addition of the component vectors,
which can be used for residual connections.

3. Multiplication: Element-wised multiplication, which can be
used for gating mechanisms.

4. Scaling: Scaling of each component vector by a separate fac-
tor, before any of the above operations. The factor can be
derived from any dimension of any feature element source.
This can be used for attention mechanisms.

In addition to the extended feature mixture that increases the
choices for generating the input vectors to the layers, the choices

of layer types are also increased. The previous release could only
create DNNSs, vanilla RNNs and TDNNSs since only FC layers were
supported. A full list of supported layers can be found in Table 1,
which can be used as building blocks to construct more complex
model architectures. A unique layer implemented in HTK 3.5.1 is
the GMM layer, which is an alternative output layer that uses SGD
to train a collection of GMMs [16]. It can therefore be used for
joint training of a tandem system, which consists of GMM-HMM
acoustic models and bottleneck features extracted by ANN models.
Moreover, multiple activation functions are added, which include the
recently proposed SELU [20] and Swish [21] activation functions.

Layer Type Description

FC Conventional fully connected layer

LSTM LSTM model for one time step

GRU GRU model for one time step

CNN 2D convolution with rectangle shaped filters
Subsampling 2D max pooling with rectangle shaped filters
GMM Every output unit is a separate GMM
SelfAttentive Self attention with modified penalty terms[17]
Permutation Re-arrange the desired dimensions from input
ActivationOnly  FC layer with only the activation function
BiasOnly FC layer with only a bias vector

Table 1. A list of ANN layers supported by HTK 3.5.1. 2D stands
for 2 dimensional.

A number of example models built using early versions of HTK
3.5.1 are listed below:

1. DNN-GMM that has a GMM layer as the output layer,
whose input are DNN extracted bottleneck features [16]. The
GMMs can be modified through constrained maximum like-
lihood linear regression (CMLLR) based speaker adaptive
training (SAT) [22].

2. Projected high order RNN (HORNNP) with stacked recurrent
layers [23]. It was found to give similar WERs, whilst using
half as many parameters as projected LSTMs (LSTMP) [24].

3. ResNet-TDNN is a TDNN whose hidden layers are replaced
by a deep structure with a residual connection [25].

4. BD-FD-Grid-RNN-ResNet-TDNN uses a bi-directional (BD)
and frequency-dependent (FD) grid-RNN as the input to the
ResNet-TDNN [25].

3.2. ML Sequence Training and Two Model Re-Estimation

ML sequence training with EBP is implemented in HTK 3.5.1. Let
A be the composite HMM created using the reference labels of an
utterance O. For the objective function log p(O|)\), we can obtain

dlogp(O|N)

Dlogar) — O~ ut) M

where 75 (t) is the posterior probability of HMM state k at time
t given O, and ar(t) and yi(¢t) are the input and output values
of the softmax output activation function associated with target k.
The value of 7, (¢) can be calculated efficiently using the forward-
backward algorithm (for HMMs) at the sequence level [6]. In HTK
3.5.1, this is easily implemented by reusing the existing code for
GMM-HMM ML training. Two model re-estimation [6] is also avail-
able using an existing function, which uses a pre-trained model to
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generate v (t) in Eqn. (1) and can be viewed as a form of sequence
level teacher-student training. Note that the ML training function
in HTK can be configured for connectionist temporal classificiation
[26] since it is equivalent to a special case of sequence level ML
training with a special HMM topology [27].

3.3. Other New Training and Test Facilities

The capabilites of SGD training are enhanced in HTK 3.5.1. In
addition to the previous absolute threshold update value clipping
[6], a new relative threshold based clipping is provided [16], based
on the distribution of gradients within a group of parameters. An-
other newly included method is the successive increase of the SGD
mini-batch size according to a pre-specified frequency and step size,
which was found helpful when training complicated models from
scratch. Similarly, a momentum increase function was added to re-
duce the difficulty in using large momentum values. Nesterov mo-
mentum is also implemented as an alternative to the standard mo-
mentum method [28]. Other common SGD related functions, such as
Batch Norm [29], Dropout [30], and the Adam learning rate sched-
uler [31], are included in HTK 3.5.1.

For testing more functionality is also added. For tandem sys-
tems, the dynamically generated bottleneck features can be ex-
panded with differentials, normalised at different levels, and used
to estimate feature transforms, such as CMLLR. This enables the
reuse of tools and scripts designed for conventional GMM-HMMs
to build and evaluate tandem systems. As mentioned in Section 3.1,
HTK allows the GMMs and ANN bottleneck features of a tandem
system to be jointly trained as an ANN model with a GMM output
layer. For language models (LM), LSTM and GRU models are sup-
ported for lattice rescoring [19]. Low-frame-rate HMMs [32, 33],
the CUDNN library, and multi-channel raw waveform input features
[18] are supported for both training and testing.

4. PyHTK LIBRARY

As described in Sections 2 and 3.1, HTK can process ANNs with
very flexible structures. However, defining a complex model struc-
ture in HTK is a problem. Previously, users had to write individual
scripts to generate the actual HTK model file. Even though RNNs
were supported in 3.5, they were very difficult to use due to need-
ing to generate the model file with the unfolded RNN structure. The
development of PyHTK significantly simplifies this procedure. Us-
ing PyHTK, any HTK model structure can be created using a config
file. The design of the config file is based on the standard Python
module configparser. An example config file defining a simple
RNN with a single recurrent layer and sigmoid activation function
is shown in Fig. 1. Beyond defining the ANN structure, the config
file can also be used to define settings and hyperparameters for the
training of the ANN structure. GMM-HMM models and training
parameters can also be included in the config file.

Instead of interfacing Python directly with the HTK C library,
PyHTK was designed to be standalone by re-implementing some
important data structures from the HTK C library in Python. Py-
HTK can interact with HTK smoothly as it can read and write HTK
model and data files. Since it is independently implemented from
HTK, PyHTK has been developed using modern programming tech-
niques such as object oriented programming and design patterns. In
addition, PyHTK can dynamically unfold recurrent models, which
allows recurrent layers to be presented to PyHTK as folded layers
for efficient model definition (see Fig. 1), but as unfolded layers to
HTK for effective frame level training with better data shuffling as

[ModelSet]

@FeatureType = <FBANK_D_Z>
InputObservation.Type = @FeatureType
@FeatureDim = 80

InputObservation.Dim = @FeatureDim
@RecurrentDim = 500

[NVector:ZeroVec]

Length = @RecurrentDim

Values = 0.0

[Layer:layer_rnn]

Kind = RNN

FeatureMixture.Num = 2
FeatureElementl.Dim = @FeatureDim
FeatureElementl.ContextShiftSet = {+5}
FeatureElementl.Source = @FeatureType
FeatureElement2.Dim = @RecurrentDim
FeatureElement2.ContextShiftSet = {0}
FeatureElement2.Source = ~V ZeroVec
UnfoldValue = 20

OutputDim = @RecurrentDim
ActivationFunction = Sigmoid
[Layer:layer_out]

Kind = FC

FeatureMixture.Num = 1
FeatureElementl.Dim = @RecurrentDim
FeatureElementl.ContextShiftSet = {0}
FeatureElementl.Source = layer_rnn
OutputDim = @auto

ActivationFunction = Softmax
[NeuralNetwork:RNN1L]

Layer2.Name = layer_rnn

Layer3.Name = layer_out

Fig. 1. An example PyHTK config file that defines a sigmoid RNN
with a single recurrent layer named as “RNNIL”. Macro variables
start with “@”. “@auto” is a special macro whose value can be
automatically set by PyHTK. “ZeroVec” is a zero-valued vector used
as the initial values for the recurrent connection. “UnfoldValue”
gives the number of steps for unfolding the recurrent layer.

well as a proper truncation in EBP through time [34]. Any number
of RNN layers is permitted, which are then unfolded for a desired
number of time-steps. Given that the model parameters are stored
in PyHTK using NumPy, parameters can be imported from a model
trained using another toolkit that uses a Python-NumPy interface,
such as PyTorch. Moreover, PyHTK is released and maintained via
GitHub, and Sphinx Autodoc is adopted to produce detailed docu-
mentation.

5. PyHTK PIPELINE

Apart from the library functions for interaction with HTK, PyHTK
also contains an ASR pipeline, which is adjustable according to dif-
ferent config files in order to apply it to different speech data sets.

This section first describes the key executable steps of the
pipeline and then delineates a new framework for distributed SGD
training that is easily obtained from the seamless integration of
PyHTK and HTK.

5.1. Building Step Scripts for ASR Construction

The Python-based ASR pipeline is divided into multiple steps to
modularise the major training and test procedures, and to allow for
their re-arrangement for more flexible system construction. Each
step contains a setup stage and a run stage. The setup stage does
the preparation for the run stage, which includes creating directories
and collecting resource files. The run stage executes the major jobs
that are often computationally intensive. This two-stage design can
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reduce difficulties in revising and debugging the steps. All currently
implemented steps are listed in Table 2, with more steps in prepa-
ration that will be released in future. The scripts can be used for
a step-by-step or a complete end-to-end build (from initial data to
final system). It is worth noting that whilst the step scripts are com-
mon to any speech data set, they can be configured using PYHTK’s
config files to meet task dependent requirements. More detailed de-
scriptions, usage, and examples of the pipeline can be found in the
HTKBook version 3.5.1.

Step Description

mono ML training for monophone GMM-HMMs
xwrd Create cross-word triphone GMM-HMMs
xform Linearly transform GMM-HMMs

rank Redistribute Gaussian components in GMMs
sat Speaker adaptive training with CMLLR
mpe MPE/MMI training for GMM-HMMs
dnn-ce CE training for ANN-HMMs

dnn-mpe  MPE/MMI training for ANN-HMMs

align Generate alignments using Viterbi algorithm
latgen Generate word or phone marked lattices
decode Decode a set of HMM acoustic models
rescore Rescore lattices with a different setup or LM
scoring Score decoding results

Table 2. The list of current building steps in the ASR pipeline.

5.2. Framework for Distributed SGD Training of ANN models

Within the distributed training algorithm, each epoch is split into
N blocks, and the algorithm splits the training data into /N non-
overlapping sub-sets. Each sub-set is used for one block. For M
workers (processes/machines), each sub-set is divided evenly among
the workers. Each worker independently updates a version of the
model by training on its allocated subset using multiple SGD up-
dates. Afterwards, the outcomes from the M workers are merged
based on the method described below. Then the next block starts in
the same fashion. This process is repeated until the epoch is finished.

The models updated by the workers are merged using PyHTK’s
functionality. The process is based on a binary tree through iterative
merging of leaf-nodes. This process is illustrated in Fig. 2. First
models from worker 1 and 2 as well as 3 and 4 are merged. This
is done through a weighted average of their parameters (61 and 02,
03 and 0,4 respectively). In order to reduce the sensitivity to combi-
nation weights, multiple options are compared, e.g. by testing on a
validation set, and the best combination weights are chosen. The re-
sulting two models are merged by a similar weighted average of their
parameters 612 and 034, resulting in the final parameters set 6oy This
merging procedure can improve on the block momentum method
[35], which has been found to be sensitive to the hyper-parameters.

It is worth mentioning that alternative distributed training algo-
rithms have also been developed at CUED [36].

6. EXPERIMENTS

To illustrate the range of model types supported by PyHTK, the mod-
els given in Section 3 were evaluated by training systems on multi-
genre broadcast (MGB) data [37] from the MGB3 English speech
recognition challenge task [38]. The experimental setup with a 63k
word vocabulary is identical to those in [22, 23, 25]. The models that

previous current
block block
0, + ()ziez)
0o = max [ ————
i 1+ oy

012 + i34
1 + Q5

Fig. 2. Distributed SGD training using PyHTK. Pairs of models,
trained on separate portions of data, are merged by weighted aver-
aging. {«a;} is a set of pre-specified combination weights, and the
resulted models are chosen based on validation set results.

are compared are a 2-layer LSTMP baseline, a 2-layer HORNNP
[23], the ResNet-TDNN and the BD-FD-Grid-RNN-ResNet-TDNN
from [25], and a tandem system with a 7-layer DNN that was jointly
optimised using the MPE training for DNN-GMM [22]. This last
system uses HTK’s special GMM layer and tandem system support,
and can be improved using CMLLR based SAT. The MPE trained
BD-FD-GridRNN-ResNet-TDNN results in a WER of 22.2%, which
is not included in [25].

System Criterion it cn

LSTMP CE 257 252
HORNNP CE 256 252
ResNet-TDNN CE 25.1 247
BD-FD-GridRNN-ResNet-TDNN  CE 246 243
DNN-GMM MPE 26.0 25.7
DNN-GMM + CMLLR SAT MPE 25.1 248
BD-FD-GridRNN-ResNet-TDNN ~ MPE 2277 222

Table 3. %WER for 275h systems on MGB dev17b with a trigram
LM and Viterbi decoding (vit) or confusion network decoding (cn).

7. CONCLUSIONS

We have presented PyHTK, which includes our recently developed
Python library and the corresponding Python based ASR pipeline, as
well as the new features in HTK 3.5.1 that PyHTK supports. PyHTK
enables much easier use of the HTK tools, especially for the design
and training of complex ANN architectures. It also contains a dis-
tributed SGD training framework using a special type of weighted
model averaging. The ASR pipeline is carefully documented in
HTKBook and can be customised to use for any speech recognition
task. HTK 3.5.1 uses extended feature mixtures that cover many
common operations seen in deep learning, and an extended selection
of ANN layers is also supported. Maximum likelihood sequence
training is enabled for both direct model training and teacher-student
training. In future HTK and PyHTK releases, it is planned to in-
clude more deep learning models, 2nd-order optimisation methods,
and lattice-free discriminative sequence training.
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