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ABSTRACT

The availability of open-source software is playing a remarkable role
in the popularization of speech recognition and deep learning. Kaldi,
for instance, is nowadays an established framework used to develop
state-of-the-art speech recognizers. PyTorch is used to build neural
networks with the Python language and has recently spawn tremen-
dous interest within the machine learning community thanks to its
simplicity and flexibility.

The PyTorch-Kaldi project aims to bridge the gap between these
popular toolkits, trying to inherit the efficiency of Kaldi and the
flexibility of PyTorch. PyTorch-Kaldi is not only a simple inter-
face between these software, but it embeds several useful features
for developing modern speech recognizers. For instance, the code is
specifically designed to naturally plug-in user-defined acoustic mod-
els. As an alternative, users can exploit several pre-implemented
neural networks that can be customized using intuitive configuration
files. PyTorch-Kaldi supports multiple feature and label streams as
well as combinations of neural networks, enabling the use of com-
plex neural architectures. The toolkit is publicly-released along with
a rich documentation and is designed to properly work locally or on
HPC clusters.

Experiments, that are conducted on several datasets and tasks,
show that PyTorch-Kaldi can effectively be used to develop modern
state-of-the-art speech recognizers.
Index Terms: speech recognition, deep learning, Kaldi, PyTorch.

1. INTRODUCTION

Over the last years, we witnessed a progressive improvement and
maturation of Automatic Speech Recognition (ASR) technologies
[1, 2], that have reached unprecedented performance levels and are
nowadays used by millions of users worldwide.

A key role in this technological breakthrough is being played by
deep learning [3], that contributed to overcoming previous speech
recognizers based on Gaussian Mixture Models (GMMs). Beyond
deep learning, other factors have played a role in the progress of
the field. A number of speech-related projects such as AMI [4] and
DIRHA [5] and speech recognition challenges such as CHiME [6],
Babel, and Aspire, have remarkably fostered the progress in ASR.
The public distribution of large datasets such as Librispeech [7] has
also played an important role to establish common evaluation frame-
works and tasks.

Among the others factors, the development of open-source soft-
ware such as HTK [8], Julius [9], CMU-Sphinx, RWTH-ASR [10],
LIA-ASR [11] and, more recently, the Kaldi toolkit [12] have further
helped popularize ASR, making both research and development of
novel ASR applications significantly easier.

Kaldi currently represents the most popular ASR toolkit. It re-
lies on finite-state transducers (FSTs) [13] and provides a set of C++

libraries for efficiently implementing state-of-the-art speech recogni-
tion systems. Moreover, the toolkit includes a large set of recipes that
cover all the most popular speech corpora. In parallel to the devel-
opment of this ASR-specific software, several general-purpose deep
learning frameworks, such as Theano [14], TensorFlow [15], and
CNTK [16], have gained popularity in the machine learning com-
munity. These toolkits offer a huge flexibility in the neural network
design and can be used for a variety of deep learning applications.

PyTorch [17] is an emerging python package that implements ef-
ficient GPU-based tensor computations and facilitates the design of
neural architectures, thanks to proper routines for automatic gradi-
ent computation. An interesting feature of PyTorch lies in its modern
and flexible design, that naturally supports dynamic neural networks.
In fact, the computational graph is dynamically constructed on-the-
fly at running time rather than being statically compiled.

The PyTorch-Kaldi project aims to bridge the gap between Kaldi
and PyTorch1. Our toolkit implements acoustic models in PyTorch,
while feature extraction, label/alignment computation, and decod-
ing are performed with Kaldi, making it suitable to develop state-
of-the-art DNN-HMM speech recognizers. PyTorch-Kaldi natively
supports several DNNs, CNNs, and RNNs models. Combinations
between deep learning models, acoustic features, and labels are also
supported, enabling the use of complex neural architectures. For
instance, users can employ a cascade between CNNs, LSTMs, and
DNNs, or run in parallel several models that share some hidden lay-
ers. Users can also explore different acoustic features, context du-
ration, neuron activations (e.g., ReLU, leaky ReLU), normalizations
(e.g., batch [18] and layer normalization [19]), cost functions, regu-
larization strategies (e.g, L2, dropout [20]), optimization algorithms
(e.g., Adam [21], RMSPROP), and many other hyper-parameters of
an ASR system through simple edits of configuration files.

The toolkit is designed to make the integration of user-defined
acoustic models as simple as possible. In practice, users can em-
bed their deep learning model and conduct ASR experiments even
without being fully familiar with the complex speech recognition
pipeline. The toolkit can perform computations on both local ma-
chines and HPC cluster, and supports multi-gpu training, recovery
strategy, and automatic data chunking.

The experiments, conducted on several datasets and tasks, have
shown that PyTorch-Kaldi makes it possible to easily develop com-
petitive state-of-the-art speech recognition systems.

2. THE PYTORCH-KALDI PROJECT

Some other speech recognition toolkits have been recently devel-
oped using the python language. PyKaldi [22], for instance, is an
easy-to-use Python wrapper for the C++ code of Kaldi and OpenFst
libraries. Differently from our toolkit, however, the current version

1github.com/mravanelli/pytorch-kaldi/.
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Fig. 1: An overview of the PyTorch-Kaldi architecture.

of the PyKaldi does not provide several pre-implemented and ready-
to-use neural models. Another python project is ESPnet [23]. ES-
Pnet is an end-to-end speech processing toolkit, mainly focuses on
end-to-end speech recognition and end-to-end text-to-speech. The
main difference with our project is the current version of PyTorch-
Kaldi implements hybrid DNN-HMM speech recognizers.

An overview of the architecture adopted in PyTorch-Kaldi is re-
ported in Fig. 1. The main script run exp.py is written in python
and manages all the phases involved in an ASR system, including
feature and label extraction, training, validation, decoding, and scor-
ing. The toolkit is detailed in the following sub-sections.

2.1. Configuration file

The main script takes as input a configuration file in INI format2,
that is composed of several sections. The section [Exp] specifies
some high-level information such as the folder used for the experi-
ment, the number of training epochs, the random seed. It also allows
users to specify whether the experiments have to be conducted on a
CPU, GPU, or on multiple GPUs. The configuration file continues
with the [dataset∗] sections, that specify information on features
and labels, including the paths where they are stored, the charac-
teristics of the context window [24], and the number of chunks in
which the speech dataset must be split. The neural models are de-
scribed in the [architecture∗] sections, while the [model] section
defines how these neural networks are combined. The latter section
exploits a simple meta-language that is automatically interpreted by
the run exp.py script. Finally, the configuration file defines the de-
coding parameters in the [decoding] section.

2.2. Features

The feature extraction is performed with Kaldi, that natively pro-
vides c++ libraries (e.g., compute-mfcc-feats, compute-fbank-feats,
compute-plp-feats) to efficiently extract the most popular speech

2The configuration file is fully described in the project documentation.

recognition features. The computed coefficients are stored in bi-
nary archives (with extension .ark) and are later imported into the
python environment using the kaldi-io utilities inherited from the
kaldi-io-for-python project3. The features are then processed by the
function load-chunk, that performs context window composition,
shuffling, as well as mean and variance normalization. As out-
lined before, PyTorch-Kaldi can manage multiple feature streams.
For instance, users can define models that exploit combinations of
MFCCs, FBANKs, PLP, and fMLLR [25] coefficients.

2.3. Labels

The main labels used for training the acoustic model derive from a
forced alignment procedure between the speech features and the se-
quence of context-dependent phone states computed by Kaldi with
a phonetic decision tree. To enable multi-task learning, PyTorch-
Kaldi supports multiple labels. For instance, it is possible to jointly
load both context-dependent and context-independent targets and
use the latter ones to perform monophone regularization [26, 27].
It is also possible to employ models based on an ecosystem of neu-
ral networks performing different tasks, as done in the context of
joint training between speech enhancement and speech recognition
[28, 29] or in the context of the recently-proposed cooperative net-
works of deep neural networks [30].

2.4. Chunk and Mini-batch Composition

PyTorch-Kaldi automatically splits the full dataset into a number
of chunks, which are composed of labels and features randomly
sampled from the full corpus. Each chunk is then stored into the
GPU or CPU memory and processed by the neural training algorithm
run nn.py. The toolkit dynamically composes different chunks at
each epoch. A set of mini-batches are then derived from them. Mini-
batches are composed of few training examples that are used for gra-
dient computation and parameter optimization.

The way mini-batches are gathered strongly depends on the ty-
pology of the neural network. For feed-forward models, the mini-
batches are composed of randomly shuffled features and labels sam-
pled from the chunk. For recurrent networks, the minibatches must
be composed of full sentences. Different sentences, however, are
likely to have different duration, making zero-padding necessary to
form mini-batches of the same size. PyTorch-Kaldi sorts the speech
sequences in ascending order according to their lengths (i.e., short
sentences are processed first). This approach minimizes the need of
zero-paddings and turned out to be helpful to avoid possible biases
on batch normalization statistics. Moreover, it has been shown use-
ful to slightly boost the performance and to improve the numerical
stability of gradients.

2.5. DNN acoustic modeling

Each minibatch is processed by a neural network implemented with
PyTorch, that takes as input the features and as outputs a set of poste-
rior probabilities over the context-dependent phone states. The code
is designed to easily plug-in customized models. As reported in the
pseudo-code reported in Fig. 2, the new model can be simply de-
fined by adding a new class into the neural nets.py. The class must
be composed of an initialization method, that specifies the parame-
ters with their initialization, and a forward method that defines the
computations to perform.

3github.com/vesis84/kaldi-io-for-python
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Fig. 2: Adding a user model into PyTorch-Kaldi.

c l a s s my NN( nn . Module ) :
d e f i n i t ( s e l f , o p t i o n s ) :

s u p e r (my NN , s e l f ) . i n i t ( )
# D e f i n i t i o n o f Model Parame te r s
# Parameter I n i t i a l i z a t i o n

d e f f o r w a r d ( s e l f , m i n i b a t c h ) :
# D e f i n i t i o n o f Model Compu ta t ions
r e t u r n [ o u t p u t p r o b ]

As an alternative, a number of pre-defined state-of-the-art neural
models are natively implemented within the toolkit. The current ver-
sion supports standard MLPs, CNNs, RNNs, LSTM, and GRU mod-
els. Moreover, it supports some advanced recurrent architectures,
such as the recently-proposed Light GRU [31] and twin-regularized
RNNs [32]. The SincNet model [33, 34] is also implemented to per-
form speech recognition from raw waveform directly. The hyper-
parameters of the model (such as learning rate, number of neurons,
number of layers, dropout factor, etc.) can be tuned using a utility
that implements the random search algorithm [35].

2.6. Decoding and Scoring

The acoustic posterior probabilities generated by the neural network
are normalized by their prior before feeding the HMM-based de-
coder of Kaldi. The decoder merges the acoustic scores with the lan-
guage probabilities derived by an n-gram language model and tries
to retrieve the sequence of words uttered in the speech signal using a
beam-search algorithm. The final Word-Error-Rate (WER) score is
computed with the NIST SCTK scoring toolkit.

3. EXPERIMENTAL SETUP

In the following sub-sections, the corpora, and the DNN setting
adopted for the experimental activity are described.

3.1. Corpora and Tasks

The first set of experiments was performed with the TIMIT corpus,
considering the standard phoneme recognition task (aligned with the
Kaldi s5 recipe [12]).

To validate our model in a more challenging scenario, exper-
iments were also conducted in distant-talking conditions with the
DIRHA-English dataset4 [36,37]. Training was based on the original
WSJ-5k corpus (consisting of 7, 138 sentences uttered by 83 speak-
ers) that was contaminated with a set of impulse responses measured
in a domestic environment [37]. The test phase was carried out with
the real part of the dataset, consisting of 409 WSJ sentences uttered
in the aforementioned environment by six native American speakers.

Additional experiments were conducted with the CHiME 4
dataset [6], that is based on speech data recorded in four noisy envi-
ronments (on a bus, cafe, pedestrian area, and street junction). The
training set is composed of 43, 690 noisy WSJ sentences recorded
by five microphones (arranged on a tablet) and uttered by a total of
87 speakers. The test set ET-real considered in this work is based
on 1, 320 real sentences uttered by four speakers, while the subset

4This dataset is distributed by the Linguistic Data Consortium (LDC).

Table 1: PER(%) obtained for the test set of TIMIT with various
neural architectures.

MFCC FBANK fMLLR
MLP 18.2 18.7 16.7
RNN 17.7 17.2 15.9
LSTM 15.1 14.3 14.5
GRU 16.0 15.2 14.9
Li-GRU 15.3 14.9 14.2

DT-real has been used for hyperparameter tuning. The CHiME
experiments were based on the single channel setting [6].

Finally, experiments were performed with the LibriSpeech [7]
dataset. We used the training subset composed of 100 hours and
the dev-clean set for the hyperparameter search. Test results are re-
ported on the test-clean part using the fglarge decoding graph inher-
ited from the Kaldi s5 recipe.

3.2. DNN setting

The experiments consider different acoustic features, i.e., 39 MFCCs
(13 static+∆+∆∆), 40 log-mel filter-bank features (FBANKS), as
well as 40 fMLLR features [25] (extracted as reported in the s5
recipe of Kaldi), that were computed using windows of 25 ms with
an overlap of 10 ms. The feed-forward models were initialized ac-
cording to the Glorot’s scheme [38], while recurrent weights were
initialized with orthogonal matrices [39]. Recurrent dropout was
used as a regularization technique [40]. Batch normalization was
adopted for feed-forward connections only, as proposed in [41]. The
optimization was done using the RMSprop algorithm running for 24
epochs. The performance on the development set was monitored af-
ter each epoch and the learning rate was halved when the relative
performance improvement went below 0.1%. The main hyperpa-
rameters of the model (i.e., learning rate, number of hidden layers,
hidden neurons per layer, dropout factor, as well as the twin regular-
ization term λ) were tuned on the development datasets.

4. BASELINES

In this section, we discuss the baselines obtained with TIMIT,
DIRHA, CHiME, and LibriSpeech datasets. As a showcase to illus-
trate the main functionalities of the PyTorch-Kaldi toolkit, we first
report the experimental validation conducted on TIMIT.

Table 1 shows the performance obtained with several feed-
forward and recurrent models using different features. To ensure
a more accurate comparison between the architectures, five exper-
iments varying the initialization seeds were conducted for each
model and feature. The table thus reports the average phone error
rates (PER)5. Results show that, as expected, fMLLR features out-
perform MFCCs and FBANKs coefficients, thanks to the speaker
adaptation process. Recurrent models significantly outperform
the standard MLP one, especially when using LSTM, GRU, and
Li-GRU architecture, that effectively address gradient vanishing
through multiplicative gates. The best result (PER=14.2%) is ob-
tained with the Li-GRU model [31], that is based on a single gate
and thus saves 33% of the computations over a standard GRU.

Table 2 details the impact of some popular techniques imple-
mented in PyTorch-Kaldi for improving the ASR performance. The

5Standard deviations range between 0.15 and 0.2 for all the experiments.
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Table 2: PER(%) obtained on TIMIT when progressively applying
some techniques implemented within PyTorch-Kaldi.

RNN LSTM GRU Li-GRU
Baseline 16.5 16.0 16.6 16.3
+ Incr. Seq. length 16.6 15.3 16.1 15.4
+ Recurrent Dropout 16.4 15.1 15.4 14.5
+ Batch Normalization 16.0 14.8 15.3 14.4
+ Monophone Reg. 15.9 14.5 14.9 14.2

Table 3: PER(%) obtained by combining multiple neural networks
and acoustic features.

Architecture Features PER (%)
Li-GRU fMLLR 14.2
MLP+Li-GRU+MLP MFCC+FBANK+fMLLR 13.8

Table 4: PER(%) obtained with standard convolutional and with the
SincNet architectures.

Model Features PER (%)
CNN FBANK 18.3
CNN Raw waveform 18.1
SincNet Raw waveform 17.2

first row (Baseline) reports the performance achieved with a basic re-
current model, where powerful techniques such as dropout and batch
normalization are not adopted. The second row highlights the per-
formance gain that is achieved when progressively increasing the se-
quence length during training. In this case, we started the training by
truncating the speech sentence at 100 steps (i.e, approximately 1 sec-
ond of speech) and we progressively double the maximum sequence
duration at every epoch. This simple strategy generally improves the
system performance since it encourages the model to first focus on
short-term dependencies and learn longer-term ones only at a later
stage. The third row shows the improvement achieved when adding
recurrent dropout. Similarly to [40,41], we applied the same dropout
mask for all the time steps to avoid gradient vanishing problems. The
fourth line, instead, shows the benefits derived from batch normal-
ization [18]. Finally, the last line shows the performance achieved
when also applying monophone regularization [27]. In this case, we
employ a multi-task learning strategy by means of two softmax clas-
sifiers: the first one estimates context-dependent states, while the
second one predicts monophone targets. As observed in [27], our
results confirm that this technique can successfully be used as an
effective regularizer.

The experiments discussed so far are based on single neural
models. In Table 3 we compare our best Li-GRU system with a
more complex architecture based on a combination of feed-forward
and recurrent models fed by a concatenation of features. To the best
of our knowledge, the PER=13.8% achieved by the latter system
yields the best-published performance on the TIMIT test-set.

Previous achievements were based on features computed with
Kaldi. However, within PyTorch-Kaldi users can employ their own
features. Table 4 shows the results achieved with convolutional mod-
els fed by standard FBANKs coefficients or by the raw waveform di-
rectly. The standard CNN based on raw samples performs similarly
to the one fed by FBANK features. A performance improvement is
observed with SincNet [33], whose effectiveness in speech recogni-
tion is here highlighted for the first time.

Table 5: WER(%) obtained for the DIRHA, CHiME, and Lib-
riSpeech (100h) datasets with various neural architectures.

DIRHA CHiME LibriSpeech
MLP 26.1 18.7 6.5
LSTM 24.8 15.5 6.4
GRU 24.8 15.2 6.3
Li-GRU 23.9 14.6 6.2

We now extend our experimental validation to other datasets.
With this regard, Table 5 shows the performance achieved on
DIRHA, CHiME, and Librispeech (100h) datasets. The Table
consistently shows better performance with the Li-GRU model, con-
firming our previous achievements on TIMIT. The results on DIRHA
and CHiME show the effectiveness of the proposed toolkit also in
noisy condition. To give a comparison, the best Kaldi baseline
proposed in egs/chime4/s5 1ch has a WER(%)=18.1%. An end-
to-end system trained with ESPnet reaches a WER(%)=44.99%,
confirming how critical is end-to-end speech recognition is chal-
lenging acoustic conditions. DIRHA represents another very chal-
lenging task, that is characterized by the presence of considerable
levels of noise and reverberation. The WER=23.9% obtained on
this dataset represents the best performance published so-far on the
single-microphone task. Finally, the performance obtained with
Librispeech outperforms the corresponding p-norm Kaldi baseline
(WER = 6.5%) on the considered 100 hours subset.

5. CONCLUSIONS

This paper described the PyTorch-Kaldi project, a new initiative that
aims to bridge the gap between Kaldi and PyTorch. The toolkit
is designed to make the development of an ASR system simpler
and more flexible, allowing users to easily plug-in their customized
acoustic models. PyTorch-Kaldi also supports combinations of neu-
ral architectures, features, and labels, allowing users to possibly em-
ploy complex ASR pipelines. The experiments have confirmed that
PyTorch-Kaldi can achieve state-of-the-art results in some popular
speech recognition tasks and datasets.

The current version of the PyTorch-Kaldi is already publicly-
available along with a detailed documentation. The project is still
in its initial phase and we invite all potential contributors to par-
ticipate in it. We hope to build a community of developers larger
enough to progressively maintain, improve, and expand the function-
alities of our current toolkit. In the future, we plan to increase the
number of pre-implemented models, support neural language model
training/rescoring, sequence discriminative training, online speech
recognition, as well end-to-end training.
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