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ABSTRACT
With recent advances in deep learning, considerable attention has
been given to achieving automatic speech recognition performance
close to human performance on tasks like conversational telephone
speech (CTS) recognition. In this paper we evaluate the usefulness
of these proposed techniques on broadcast news (BN), a similar chal-
lenging task. We also perform a set of recognition measurements to
understand how close the achieved automatic speech recognition re-
sults are to human performance on this task. On two publicly avail-
able BN test sets, DEV04F and RT04, our speech recognition sys-
tem using LSTM and residual network based acoustic models with
a combination of n-gram and neural network language models per-
forms at 6.5% and 5.9% word error rate. By achieving new per-
formance milestones on these test sets, our experiments show that
techniques developed on other related tasks, like CTS, can be trans-
ferred to achieve similar performance. In contrast, the best measured
human recognition performance on these test sets is much lower, at
3.6% and 2.8% respectively, indicating that there is still room for
new techniques and improvements in this space, to reach human per-
formance levels.

Index Terms— Broadcast News, Automatic Speech Recogni-
tion, Deep neural networks.

1. INTRODUCTION

Prior to the recent ubiquitous deployment of automatic speech recog-
nition technology for various device user interfaces, two key do-
mains of interest for application of automatic speech recognition
technology were conversational telephone speech (CTS) and broad-
cast news (BN). Interest in these domains was primarily fueled by
various DARPA programs [1]. More recently, by employing various
deep learning techniques, performance of speech recognition sys-
tems on the CTS task is getting close to human parity. Several sites
have made significant progress to lower the WER to within the 5%-
10% range on the Switchboard-CallHome subsets of the Hub5 2000
evaluation [2, 3, 4, 5]. Given the progress on conversational tele-
phone speech, we focus on the other closely related broadcast news
recognition task that received similar attention within the DARPA
EARS program. One of the key objectives of this study is to under-
stand how deep learning based techniques developed on CTS gener-
alize to the BN task.

In the BN domain, speech recognition systems need to deal with
wide-band signals collected over a wide variety of speakers with dif-
ferent speaking styles, in various background noise conditions, and
speaking on a wide variety of news topics. Most of the speech is
well articulated and is formed similarly to written English. In con-
trast, CTS is spontaneous speech recorded over a telephone channel

Fig. 1. The NIST STT Benchmark Test History - May’09 [7]

that introduces additional artifacts in addition to numerous speak-
ing styles. Conversational speech is interspersed with portions of
overlapping speech, interruptions, restarts and back-channel confir-
mations between participants. In terms of the amount of training
data available from the DARPA EARS program for training systems
on CTS and BN, there are a few significant differences as well. The
CTS acoustic training corpus consists of approximately 2000 hours
of speech with human transcriptions [2]. On the other hand, for
the BN task, only about 140 hours of data is carefully transcribed.
The remaining ∼9000 hours of available speech are TV shows with
closed captions. In other words, models being developed for BN
typically use lightly supervised transcripts for training [6].

The EARS program led to significant advances in speech recog-
nition technology for both domains, with the development of tech-
niques that could ingest large quantities of unsupervised or semi-
supervised training data, discriminative training of recognition mod-
els, methods to deal with channel and speaker variabilities in the
data, real-time decoding of test data, and also approaches to combine
outputs from various systems [8, 9, 10, 11]. Several of these tech-
niques have further been extended to build ASR systems on broad-
cast news data in various languages [12, 13, 14]. Figure 1 shows
progress made in this domain over the past two decades. More re-
cently, as part of the MGB Challenge, in addition to the core ASR
problem, several other related tasks - speaker diarization and lightly
supervised alignment of data have also been studied [15, 16].

In [2, 3] we describe state-of-the-art speech recognition systems
on the CTS task using multiple LSTM and ResNet acoustic models
trained on various acoustic features along with word and character
LSTMs and convolutional WaveNet-style language models. This ad-
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vanced recipe achieves 5.1% and 9.9% on the Switchboard and Call-
Home subsets of the Hub5 2000 evaluation. In this paper we develop
a similar but simpler variant for BN. As described earlier, by devel-
oping this system we investigate how these earlier proposed systems
can be trained on BN data which are not human annotated but are
created using closed captions. To create these systems, instead of
adding all the available training data we carefully select a reliable
subset. We then train LSTM and residual network based acoustic
models with a combination of n-gram and neural network language
models on this selected data. In addition to automatic speech recog-
nition results, similar to [2], we also present human performance on
the same BN test sets. These evaluations allow us to properly bench-
mark our automatic system performance. Similar to earlier human
performance evaluations on CTS, we observe a significant gap be-
tween human and automatic results.

The rest of the paper is organized as follows. In Section 2 we de-
scribe the human evaluation experiments on two broadcast news test
sets - RT04 and DEV04F. We also compare the recognition errors we
observe with human and automatic recognition systems. Section 3
describes the development of our ASR systems - training data selec-
tion, acoustic and language model building. In Section 4 we present
WER results using the proposed system. The paper concludes with
a discussion in Section 5.

2. HUMAN TRANSCRIPTION EXPERIMENTS

Similar to [2], human performance measurements on two broadcast
news tasks - RT04 and DEV04F - are carried out by Appen. For these
evaluations we limit the audio from the test sets to only regions of
speech that are marked for scoring using the original references and
scoring scripts provided during the EARS evaluation. After process-
ing, the RT04 test set has 4 hours of BN data from 12 shows with
about 230 overlapping speakers across the shows. The DEV04F test
set is smaller, with about 2 hours of data from 6 shows with close to
100 overlapping speakers across the shows.

The first round of transcripts was produced by three indepen-
dent transcribers, followed by quality checking by a fourth senior
transcriber. All four transcribers are native US English speakers and
were selected based on the quality of their work on past transcription
projects. The transcriptions were produced in line with LDC tran-
scription guidelines for hyphenations, spelled abbreviations, con-
tractions, partial words, non-speech sounds, etc. that were used to
produce the original transcripts for these test sets. The three primary
transcribers took 14-16 times real-time (xRT) for the first pass fol-
lowed by an additional 3xRT for the second quality checking pass
(by Transcriber 4). Both passes involved listening to the audio mul-
tiple times: around 3-4 times for the first pass and 1-2 times for the
second. In order to use NIST’s scoring tool, sclite [17], the human
annotations were converted into CTM files which have time-marked
word boundary information. The transcriptions were also filtered to
remove non-speech markers, partial words, punctuation marks etc
as described in [2]. Table 1 shows the error rates of the three tran-
scribers after quality checking by the fourth transcriber.

DEV04F RT04
Transcriber 1 4.4 3.6
Transcriber 2 4.4 3.2
Transcriber 3 3.6 2.8

Table 1. Human Performance (WER%) on RT04 and DEV04F.

Compared to the human transcription results on the CTS tasks,

5.1% and 6.8% on the Switchboard and CallHome subsets of the
Hub5 2000 evaluation [2], the word error rate on BN is much lower.
Although this reduction could be because BN speech is well articu-
lated, the transcribers reported that these test sets were much denser
with respect to speech content, had considerable background noise,
and a significant number of named entities that required lookup to
ensure correctness, compared to traditional CTS test sets. The best
WER results we obtain, 3.6% and 2.8%, also fit in the expected hu-
man transcription error range indicated in Figure 1. A more detailed
error analysis and comparison of human and automatic recognition
is presented in the Discussion section.

3. ASR SYSTEM BUILDING

As described earlier, one differentiating characteristic of ASR sys-
tem builds for this BN task is the limited amount of carefully an-
notated manual transcriptions. Prior to the EARS program, LDC
released about 144 hours of careful manual annotations for a por-
tion of the Hub4 acoustic training data collected between May 1996
and January 1998. In addition to this, several sources of BN data
were available for training acoustic models during the EARS pro-
gram period with just closed caption transcripts. These data sources
include about 1000 hours of data as part of different data releases
collected between 1998-2001 (TDT2 and TDT4) and about 7000
hours of broadcast news released in 2003 as part of the EARS pro-
gram (BN03). In this paper we use processed versions of these data
sources to build deep neural network based acoustic and language
models.

3.1. Training Data Preparation

To process the BN data with noisy closed captions, the data is first
decoded with multiple off-the-shelf broadband ASR systems using
a biased LM created with the available closed captions. Based on
the confidence scores of these decodes and agreement between the
multiple system decodes, we perform a strict filtering of the data to
create 2 sub-corpora that we consider have very reliable transcripts -

• The BN-400 Corpus - This is a corpus of about 430 hours
of broadcast news data selected from the data sources de-
scribed above. This data corpus includes 144 hours of care-
fully transcribed audio along with data with semi-supervised
transcripts created via a biased decode of the matching audio.

• The BN-1300 Corpus - This corpus is an extended version of
the BN-400 corpus with about 900 additional hours of broad-
cast news.

3.2. Acoustic Model Development

As discussed earlier, one of the key objectives of this work is to
verify the usefulness of our earlier proposed system strategy for
CTS. In [2], two kinds of acoustic models, a convolutional and a
non-convolutional acoustic model with comparable performance, are
used since they produce good complementary outputs which can be
further combined for improved performance. The convolutional net-
work used in that work is a residual network (ResNet) and an LSTM
is used as the non-convolutional network. The acoustic scores of
these systems are subsequently combined for the final decodes. Sim-
ilar to that work, in this paper also we train ResNet and LSTM based
acoustic models.

Both these acoustic models are based on speaker transformed
features. The ResNet uses 40 dimensional VTL-warped log-mel fea-
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Input 3 × 40 × 76
conv 5x5, 64;

Stage 0 maxpool (2×1)
initStride 1 × 1;

Stage 1 3 × [conv 3×3, 64 feat. maps, conv 3×3, 64 feat. maps]
initStride 2 × 1;

Stage 2 3 × [conv 3×3, 128 feat. maps, conv 3×3, 128 feat. maps]
initStride 2 × 1;

Stage 3 3 × [conv 3×3, 256 feat. maps, conv 3×3, 256 feat. maps]
initStride 2 × 2;
3 × [conv 3×3, 512 feat. maps, conv 3×3, 512 feat. maps];

Stage 4 maxpool (2×2)
Output 3 × FC 2084; FC 1024; FC 32K

Table 2. ResNet acoustic model architecture

tures along with their ∆ and ∆∆ transforms. The LSTM based net-
work is trained on 40 dimensional FMLLR features appended with
100 dimensional ivectors and 40 dimensional VTL-warped log-mels
along with their ∆ and ∆∆ parameters. The speaker transformed
features - FMLLR and VTL-warped features and ivectors, are de-
rived using traditional HMM-GMM based systems trained on the
BN-400 corpus. We model the acoustic space with 32K context-
dependent HMM states.

Similar to the architecture in [2], we train an LSTM acous-
tic model with 6 bidirectional layers having 1024 cells per layer
(512 per direction), one linear bottleneck layer with 256 units
and an output layer with 32K units corresponding to the context-
dependent HMM states we derived in the HMM-GMM system
build. The model is trained using non-overlapping subsequences of
21 frames. Subsequences from different utterances are grouped into
mini-batches of size 128 for processing speed and reliable gradient
estimates. After the cross-entropy based training on the BN-1300
Corpus has converged we also sequence train the model using the
144 hours of carefully transcribed audio.

To complement the LSTM acoustic model, we train a deep
Residual Network based on the best performing architecture pro-
posed in [2]. The ResNet has 12 residual blocks followed by 5 fully
connected layers. To effectively train this network with 25 convolu-
tional layers, a short-cut connection is placed between each residual
block to allow for additional flow of information and gradients.
Each layer has a batch normalization layer as well. Table 2 gives
a summary of the network architecture of the ResNet model. The
ResNet consists of several stages with different numbers of feature
maps in each stage: 64 in stage 1, 128 in stage 2, 256 in stage 3
and 512 in stage 4. Each stage has an “initStride” which indicates
the (frequency × time) stride for the first block of that stage as the
number of feature maps is increased. The stride applies to both the
first 3×3 convolution of each block and also the 1×1 convolution in
projection shortcut between each block. The ResNet acoustic model
is trained using the cross-entropy training criterion on the BN-1300
Corpus and then sequence trained using the 144 hours of carefully
transcribed audio.

3.3. Language Model Development

Similar to the development of acoustic models, several kinds of n-
gram and neural network based language models are built on this BN
task. For the initial decode that produces word lattices, an n-gram
and a feed forward neural network language model are first built. To
rescore the word lattices and n-best lists produced by these models,
advanced LSTM based NN language models are also constructed.

AM LM DEV04F RT04
LSTM n-gram 7.6 7.7
ResNet n-gram 9.6 8.9
LSTM n-gram + FFNN-LM 7.2 7.0
ResNet n-gram + FFNN-LM 9.0 8.1
LSTM+ResNet n-gram + FFNN-LM 7.2 7.0

Table 3. ASR decoding results (WER%) on RT04 and DEV04F.

DEV04F RT04
LSTM1-LM rescoring 6.6 6.1
LSTM2-LM rescoring 6.6 6.1

LSTM1/LSTM2-LM rescoring 6.5 5.9

Table 4. LSTM rescoring results (WER%) on RT04 and DEV04F.

The primary language model training text for all these models
consists of a total of 350M words from different publicly available
sources released by LDC during the GALE [1] and EARS evaluation
periods suitable for broadcast news. The baseline language model is
a linear interpolation of word 6-gram models, one for each corpus
with a vocabulary size of about 80K words. We train a feed forward
neural network model based on the same data and vocabulary as the
n-gram language model described above. The neural network model
(FFNN-LM) uses an embedding size of 120, a hidden layer size of
1200 and the maxout non-linearity [18]. We use noise contrastive
estimation to train this unnormalized NNLM [19]. For decoding ex-
periments, the FF-NNLM is interpolated with the baseline 6-gram
arpabo with an interpolation weight set to 0.5.

In addition to the n-gram and feed forward neural network lan-
guage models, we also train two different flavors of LSTM lan-
guage models with the same vocabulary and training data as de-
scribed above. The first LSTM model (LSTM1-LM) consists of one
word embedding layer with 256 units, four LSTM layers with 1024
units, one fully-connected layer, and one softmax layer. The second
to fourth LSTM layers and the fully-connected layer allow residual
connections [20]. Dropout is applied to the vertical dimension only
and not applied to the time dimension. We trained this model to
minimize the cross-entropy objective using Adam for learning rate
control [21]. The second LSTM based LM (LSTM2-LM) consists
of two LSTM layers, each layer with 2048 nodes and a word embed-
ding size of 512. Before the softmax-based estimation of an 80K-
dimensional posterior vector, the feature space was reduced to 128
by a linear bottleneck layer. During the training various dropout
techniques were applied [22]. First, the outputs of the embedding
and each LSTM layer were masked at a 10% rate. Second, 10%
dropout was also applied on the embedding weights, and also on
the parameters of the recurrent connection of the LSTMs. These
weight masks were kept constant during processing a mini-batch of
sequences. In the final step of the training, the model was fine-tuned
on the best matching resource, the EARS BN data. The SGD based
model training uses a batch size of 128 and a Nesterov momentum
of 0.9 to optimize model parameters on the cross-entropy criterion.

4. ASR EXPERIMENTS AND RESULTS

The acoustic and language models described above are used to de-
code the RT04 and DEV04F test sets. We use the same speech seg-
ments that were provided to the human annotators for our various
experiments. In our first set of experiments we separately test the
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DEV04F RT04
ASR Human ASR Human

Sub 3.2 1.9 3.1 1.6
Del 2.2 0.8 2.2 0.6
Ins 1.1 0.9 0.6 0.6
All 6.5 3.6 5.9 2.8

Table 5. Overall substitution, deletion and insertion errors of hu-
mans and ASR system.

LSTM and ResNet models in conjunction with the n-gram and FF-
NNLM, before combining scores from the two acoustic models. Ta-
ble 3 shows the individual and combined results we obtain on both
the test sets. In comparison with the results obtained on the CTS
evaluation with similar acoustic models [2], the LSTM and ResNet
operate at similar WERs. Unlike results observed on the CTS task,
no significant reduction in WER is obtained after scores from both
the LSTM and ResNet models are combined. The LSTM model with
an n-gram LM individually performs quite well and its results further
improve with the addition of the FF-NNLM.

For our second set of experiments word lattices are generated
after decoding with the LSTM+ResNet+n-gram+FF-NNLM model.
We generated n-best lists from these lattices and rescored them with
the LSTM1-LM. LSTM2-LM is also used to rescore word lattices
independently. Table 4 shows the results after our rescoring exper-
iments. We observe significant WER gains after using the LSTM
LMs similar to those reported in [2]. By rescoring outputs with both
LSTM1 and LSTM2, we achieve new performance milestones with
final WERs of 6.5% and 5.9% on DEV04F and RT04 respectively.

Our ASR results have clearly improved state-of-the-art perfor-
mance on these test sets compared to the various results reported
in [8, 9, 23]. Significant progress has also been made compared to
systems developed over the last decade, as shown in Figure 1.

5. DISCUSSIONS

When compared to the human performance results, the absolute
ASR WER is about 3% worse. From Table 5 we observe that al-
though the machine and human insertion error rates are comparable,
the ASR system has much higher substitution and deletion error
rates. Tables 6 and 7 list the 10 most frequent errors of each type.
We draw the following observations based on these errors -

1. There is a significant overlap in the words that ASR and hu-
mans delete, substitute and insert.

2. Humans seem to be careful about marking hesitations - %hes-
itation is the most inserted symbol. Hesitations seem to be
important in conveying meaning to the sentences in human
transcriptions. The ASR systems however focus on blind
recognition and not in improving the meaning with appro-
priate pauses, etc. To measure the extent of this process, we
score the human transcripts without any hesitations in a sepa-
rate experiment and observe a 0.1% absolute improvement in
WER.

3. Machines have trouble recognizing short function words -
{the, and, of, a, that} and these get deleted the most. Hu-
mans, on the other hand, seem to catch most of them. It is
likely that these words are not fully articulated and hence the
machine fails to recognize them while humans are able to in-
fer these words even without full acoustic evidence since they
may have a better model of syntax/semantics.

DEV04F RT04
ASR Human ASR Human
8: and / in 5: too / to 21: the / a 19: the / a
7: had / have 4: is / has 16: and / in 15: and / in
3: a / the 4: a / the 15: a / the 11: in / and
3: has / is 4: had / have 14: has / is 7: (%hes) / a
3: on / in 3: the / (%hes) 11: (%hes) / a 6: this / the
3: that / it 3: on / in 11: in / and 5: are / were
3: too / to 3: (%hes) / a 8: that / it 4: and / then
3: this / the 3: in / and 7: this / the 4: as / is
2: (%hes) / and 3: and / in 6: is / as 3: (%hes) / and
2: and / an 2: are / were 4: it / that 2: an / in

Table 6. Most frequent substitution errors for humans and ASR sys-
tems on DEV04F and RT04

Deletions Insertions
DEV04F RT04 DEV04F RT04

ASR Human ASR Human ASR Human ASR Human
49: the 13: the 92: and 21: and 15: and 33: (%hes) 10: i 31: (%hes)
43: and 10: a 69: the 21: the 12: colon 14: and 8: and 13: a
21: a 8: and 52: a 17: a 10: to 10: the 7: it 11: and
17: that 8: that 47: it 14: is 8: call 7: it 6: that 10: c
17: to 6: it 35: that 9: in 8: the 5: is 6: to 9: have
16: it 5: i 33: is 9: that 7: a 4: a 4: a 8: the
16: of 5: of 32: in 8: are 7: ask 4: that 4: post 6: it
15: you 5: you 28: you 8: i 5: are 4: to 3: are 5: post
14: are 4: are 22: of 8: of 4: how 3: are 3: had 5: to
10: in 3: have 19: i 7: (%hes) 3: be 3: c 3: he 4: are

Table 7. Most frequent deletion and insertion errors for humans and
ASR systems on DEV04F and RT04

4. Compared to the telephone conversation confusions recorded
in [2] - one symbol that is clearly missing is the back-channel
response - this is probably from the very nature of the BN
domain.

5. Similar to telephone conversation confusions reported in [2],
humans performance is much higher because the number of
deletions is significantly lower - compare 2.3% vs 0.8%/0.6%
for deletion errors in Table 5.

6. CONCLUSION

We have presented recent improvements on broadcast news tran-
scription based on earlier established techniques shown to be useful
on CTS. Our experiments on BN show that these techniques can be
transferred across domains to provide highly accurate transcriptions.
For both acoustic and language modeling we have demonstrated the
effectiveness of LSTM and ResNet based models. To verify the ex-
tent of the improvements obtained, human evaluation experiments
are also performed on the two test sets of interest. We show that
there still exists a significant gap between human and machine per-
formance and demonstrate the need for continued research on broad-
cast news.
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