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ABSTRACT 

 

This work proposes a new neural network framework to 

simultaneously rank multiple hypotheses generated by one 

or more automatic speech recognition (ASR) engines for a 

speech utterance.  Features fed in the framework not only 

include those calculated from the ASR information, but also 

involve natural language understanding (NLU) related 

features, such as trigger features capturing long-distance 

constraints between word/slot pairs and BLSTM features 

representing intent-sensitive sentence embedding.  The 

framework predicts the ranking result of the input 

hypotheses, outputting the top-ranked hypothesis as the new 

ASR result together with its slot filling and intention 

detection results.  We conduct the experiments on an in-car 

infotainment corpus and the ATIS (Airline Travel 

Information Systems) corpus, for which hypotheses are 

generated by different types of engines and a single engine, 

respectively. The experimental results achieved are 

encouraging on both data corpora (e.g., 21.9% relative 

reduction in word error rate over state-of-the-art Google 

cloud ASR performance on the ATIS testing data), proving 

the effectiveness of the proposed ranking framework. 

Index Terms— Speech recognition, hypothesis re-

ranking, joint training, slot filling, intent detection 

 

1. INTRODUCTION 

 

Improvements to ASR can be made in various directions, 

such as refining acoustic/language model [1-4] and adopting 

end-to-end schema [5, 6].  Among these directions, post-

processing the hypotheses generated by ASR engine(s) has 

been a popular choice, mainly because it is much more 

convenient to apply linguistic knowledge to ASR hypotheses 

than to the decoding search space.  Some post-processing 

methods construct certain confusion networks from the ASR 

hypotheses and then distinguish among competing words 

with the aid of acoustic/linguistic knowledge [7, 8, 9].  Many 

previous works rescore and rank ASR hypotheses using 

various advanced language models or discriminative models 

[10-14].  Pairwise classification based ranking approaches 

have also been proposed using support vector machine or 

neural network encoder based classifier [15, 16].  From the 

aspect of knowledge usage, previous ASR approaches utilize 

only limited linguistic knowledge, mainly modeling word 

sequence or extracting features directly from word 

sequences [11, 17].  NLU information [18-20], such as slots 

and intents, are typically not used in efforts to improve ASR.   

In this paper, we propose a new neural network 

framework to rank multiple hypotheses for one utterance.  

Instead of scoring each hypothesis one by one or comparing 

two hypotheses at a time before ranking, the framework uses 

all competing hypotheses as input and predicts the ranking 

of them simultaneously.  The framework makes use of NLU 

knowledge to facilitate the ranking by modeling with 

slot/intent relevant features, and optionally joint training 

with intent detection.  Novel soft target values that capture 

ranking distribution are also proposed for the training of the 

framework.  We evaluate the framework on two data corpora 

in different domains, and the encouraging results obtained 

verify that the framework can effectively rank hypotheses 

generated by either a single ASR engine or multiple engines.  

Experimental results also show adopting NLU knowledge is 

beneficial, and using the soft target values instead of one-hot 

target values in training is important for the framework.     

 

2. PROPOSED RANKING FRAMEWROK 

 

2.1. Overall Framework Structure 

We propose a new framework to rank ASR hypotheses.  The 

framework is a deep feedforward neural network, which 

receives inputs from N (N=10 in this study) competing 

hypotheses generated by one or more ASR engines for a 

speech utterance, and predicts the ranking result for those 

hypotheses, optionally together with the intent detection 

result.  The overall structure is illustrated in Figure 1.  
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Features extracted from the hypotheses are fed into the 

input layer with the same type of features from different 

hypotheses concatenated together to facilitate the learning.  

For one feature type, hundreds or more features may be 

extracted from each hypothesis.  We use two projection 

layers to handle such features.  Per feature type, a shared 

projection matrix is first used to project the features from 

each hypothesis into a smaller space, and then a 2nd regular 

project layer is used to project those spaces from all 

hypotheses into an even more condense representation.  The 

achieved representation for each type of features are then 

concatenated and fed into the inner layers, which are fully-

connected feedforward layers.  In case that a feature type 

may only generate one or a few features per hypothesis, such 

as the confidence score feature, we simply omit the 

projection layers for that feature type and directly feed the 

corresponding features extracted from all hypotheses into 

the inner layers, by concatenating these features with the 2nd 

project layer for other feature types.    

The output layer contains two parts, one major part 

predicting the ranking results for the input hypotheses and 

another optional part predicting intent detection result.  The 

major part contains N output nodes, which are corresponding 

to the N input hypotheses in the same order.  Softmax 

activation [21] is used to generate the output values, and the 

hypotheses are then ranked based on the values accordingly.  

To effectively rank the hypotheses, we propose soft target 

values [22] (instead of one-hot values) for training as,   
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where di is the Levenshtein distance of the ith hypothesis 

from the reference sentence.  With this definition, the target 

distribution reserves the ranking information of the input 

hypotheses, generating a higher score for an output node if 

the corresponding input hypothesis contains less ASR errors.  

By minimizing the Kullback-Leibler Divergence loss, the 

output distribution approximates the target distribution. 

The “intent output” part in the output layer is optional.  

When intents are available, it could be beneficial to jointly 

train the ranking task and intent detection, since the intent 

information may help distinguish among the hypotheses.  

For the intent related output, the nodes are corresponding to 

possible intents, assigned with one-hot target values (1 for 

the reference intent and 0 for others) and trained with cross-

entropy loss.  When intent output is utilized, we jointly train 

the network, back-propagating the costs from both the ASR 

ranking part and the intent related part to the lower layers.  

 

2.2. Features 

In this study, four types of features (listed below) are 

extracted from each input hypothesis. 

(1) Trigger Feature 

Trigger features are used to model long/flexible-distance 

constraints [23].  In this work, we define triggers as a pair of 

linguistic units that are significantly correlated in a same 

sentence, where a linguistic unit could be a word or a slot 

(i.e., <song name>).  A trigger pair (e.g., “play”  <song 

name>) captures the dependencies between the two units no 

matter how far they may be apart in a sentence.  Given a 

collected text corpus in the domain of interest, we first 

process it by using the slots to replace corresponding text 

(e.g., using <song name> to replace “Poker Face”). We then 

calculate the mutual information (MI) scores of all possible 

trigger pairs AB based on the corpus as follows [23], 
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where A / B  refers to the event that A/B does not appear in 

a sentence.  The top n trigger pairs with highest MI scores 

are then selected as trigger features.   

When extracting trigger features from a hypothesis, a 

standalone NLU module is used to detect the slots in that 

hypothesis.  The value of a trigger feature is 1 if the trigger 

pair appears in the hypothesis, and 0 otherwise.  

(2)  BOW Feature 

We also adopt the bag-of-words (BOW) features, which 

were previously used in feedforward neural network 

language modeling [24].  Given a dictionary, a vector of 

BOW features is calculated for each hypothesis as follows,  

                                                (3)   

where K is the number of words in the hypothesis and  is 
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Fig. 1. The proposed framework to rank hypotheses generated by one or more ASR engines for one speech utterance.
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the one-hot representation of the i-th word in the hypothesis.  

 1,0  is a decaying factor, set as 0.9 as in [24]. 

(3) BLSTM Feature 

The NLU module used in the extraction of trigger features 

utilizes bidirectional LSTM RNN to encode each hypothesis 

(see Section 2.3), where the last states of both the forward 

and backward RNN cover information of entire hypothesis 

[19].  We concatenate the two last states into a sentence 

embedding vector, referred to as the BLSTM features.  

Since the NLU module is a joint model of intent detection 

and slot filling, the BLSTM features are intent-sensitive.  

(4) Confidence Feature  

Sentence-level confidence score assigned by ASR engine to 

each hypothesis is also used as feature, which is directly fed 

into the inner layers.  Note that various ASR engines may 

produces confidence scores using different distributions.  

When the input hypotheses are generated by different ASR 

engines, we apply a linear regression method [15] proposed 

previously to align the confidence scores into a same space, 

and then use the aligned score as the confidence feature.  

 

2.3. A Standalone NLU Module 

play music from relax

Play Playlist

(Intent Detection)

O
Playlist

Name

word

embedding

named-entity 

features

(optional)

0

..

0

0

1

0

..

0

0

1

1

..

0

Encoder Decoder

(Slot Filling)

O O

0

..

0

 
Fig. 2.  Standalone encoder-decoder NLU module. 

The standalone NLU module used in feature extraction as 

well as in the evaluation later is implemented using a state-

of-the-art approach [19] that jointly models slot filling and 

intent detection.  The module adopts a RNN based encoder-

decoder structure (see Figure 2), using LSTM as the RNN 

unit.  Pre-trained word embedding vector [25, 26] for each 

input word can be fed into the encoder.  We further propose 

a method to enhance the input vector by appending named-

entity features to it, when predefined name lists available.  

The aim is to use the added name information to facilitate 

learning, especially for the case when the training data is of 

limited size and many names occur only a few times or are 

unseen in it.  For the named-entity features, each of them is 

corresponding to one name list, set as 1 if the input word is 

part of a name in that list and 0 otherwise.  For the example 

shown in Figure 2, the word “relax” is both a song name and 

playlist name, so that the two corresponding features are set 

as 1 in the named-entity vector.  Using this information 

together with the context knowledge captured by the RNN, 

the NLU module may identify “relax” as a playlist name 

even if the name “relax” is unseen in the training data.  

3. EXPERIMENTS 

 

3.1. Datasets and Experimental Settings  

We use an internal in-car infotainment corpus, for which 

different types of ASR engines are available, to evaluate the 

framework for ranking hypotheses generated by multiple 

engines.  A popular public dataset, ATIS corpus, is adopted 

for the task of ranking hypotheses generated by one engine.   

The in-car infotainment corpus covers driver assistant 

related topics.  The speech training/tuning/testing sets were 

recorded in car with relatively low noise conditions from 

multiple speakers with balanced gender, containing 9166, 

1975, and 2080 utterances respectively.  Each utterance is 

decoded by two domain-specific ASR engines (using 

grammar and statistical language model respectively, trained 

on separate in-domain datasets) and a general cloud engine.   

The three engines have complementary strengths for 

decoding.  We feed the top-best hypothesis from each engine 

into the proposed framework to rank.  For this corpus, most 

names involved are from 16 name lists, some of which are 

large (e.g., the song list has 5232 entries).  40 slot labels 

(including phone number, frequency, etc. which have no 

predefined list) were created following IOB schema [27] and 

89 distinct intents (e.g., “tune radio frequency”) are used.  

The ATIS corpus [28] contains 4978 original training 

sentences, from which we randomly select 491 sentences as 

the tuning set and use the remaining as the training set.  The 

testing set contains 893 sentences.  For ATIS corpus, to 

simulate the condition in real-life applications, we synthesize 

speech utterances with noises and reverberation added, using 

the approach described in [29].  The state-of-the-art Google 

cloud ASR engine is then applied to generate 10 hypotheses 

at maximum with confidence scores per utterance.  For 

ATIS data, there are 127 slot labels and 18 distinct intents.  

For both in-car infotainment and ATIS data, we develop 

and evaluate the systems in similar ways.  The standalone 

NLU module is trained with the reference sentences.  100d 

GloVe vector [25] is used as word embedding for each input 

word.  Since ATIS data provides no name list, the named-

entity vector is applied to infotainment data only, 

constructed based on the given name lists.  The NLU 

module is trained in the same way as in [19], but the 

attention mechanism is not used due to its limited benefit 

observed on ASR hypotheses and efficiency consideration.  

Trigger features are selected based on the training 

references for ATIS data, and on an additional text set of 

24836 in-domain sentences for infotainment data.  In this 

study, 850 trigger features are utilized for both corpora.  For 

the BOW feature, the dictionary is defined as the 90% most 

frequent words in training references, along with an entry for 

out-of-vocabulary words.  The alignment of confidence 

scores is only needed and applied for the infotainment data.  

The ranking framework accepts 10 sentence hypotheses 

to rank.  When there are less than 10 input hypotheses, we 
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void the space of extra hypotheses in the input layer by 

setting the related features as 0.  In the framework, each 

shared projection matrix projects the corresponding features 

into a space of 50 nodes.  This leads to a layer of size 

50*10*3 (500 nodes for trigger, BOW, and BLSTM features 

respectively), which is further projected to a smaller 2nd 

projection layer (200*3 for infotainment data, 100*3 for 

ATIS).  This layer is then concatenated with 10 confidence 

features to feed into input layers.  For inner layers, 4 layers 

(500, 200, 100 and 100 nodes, respectively) are used for 

infotainment data, and 3 layers (200, 100 and 50 nodes, 

respectively) are used for ATIS, with ReLU activation [30] 

and batch normalization [31] applied to each layer.  We 

adopt Adam optimization [32] to train the model in batches.  

Early stopping is conducted when the loss on the tuning set 

fails to improve for the last 30 iterations.  The model having 

the best performance on tuning data is used in evaluation.  

3.2. Experimental Results on In-Car Infotainment Data  

For the standalone NLU module, we found that feeding the 

named-entity features into the encoder is beneficial, e.g., 

reducing the intent detection error rate from 9.12% to 5.17% 

and raising the slot filling F1 score from 64.55 to 90.68 on 

testing references.  This indicates that the name information 

introduced effectively relieves the difficulty in learning 

when using large name lists and limited training data.  

For the ranking framework, we first train a framework 

using only ASR ranking output, referred to as the ASR-alone 

framework, and then train a joint framework using both ASR 

ranking and intent outputs. The evaluation results of the two 

frameworks are included in Table 1.   

Table 1. Results on in-car infotainment testing data. 

 WER% Intent Error% Slot F1 

Oracle hypo. +NLU  3.87 7.84 84.51 

Top-scored hypo. +NLU  7.56 11.37 79.73 

ASR-alone Framework 7.05 10.49 79.82 

Joint Framework 6.69 10.00 80.50 

In Table 1, “Oracle hypo.” and “Top-scored hypo.” 

refer to the hypothesis with the lower word error rate (WER) 

and highest (aligned) confidence score, respectively, among 

competing hypotheses.  “+NLU” denotes the procedure that 

applies the standalone NLU module to a hypothesis to get 

NLU results (i.e., slot filling F1 score and intent detection 

error rate).  We evaluate both WER and NLU results 

because for the ranking framework, each input hypothesis is 

processed by the NLU module during feature extraction, 

obtaining its NLU results.  When the framework predicts the 

top-ranked hypothesis, it also retrieves the NLU results 

associated with that hypothesis.  Note that for the joint 

framework, the intent related output also predicts an intent.  

However we notice that this predicted intent performs worse 

than the intent assigned to the top-ranked hypothesis, 

possibly due to the confusion introduced by competing 

hypotheses.  We thus choose the later as the intent result. 

Table 1 shows that the ASR-alone framework brings a 

6.75% relative reduction in WER over the “top-scored 

hypo.” baseline (i.e., the performance of ranking hypotheses 

based on aligned confidence score only), which outperforms 

each individual engine’s performance.  The joint framework 

enlarges the benefit to 11.51% relative WER reduction. For 

NLU results, similar improvements are achieved.   

Experiments also show that for the framework, adopting 

the proposed soft target values for ranking is important.  For 

example, when replacing the soft target values with one-hot 

values, the WER obtained by the joint model rises to 7.21%.   

We also observe that all the four types of features are 

beneficial for the in-car infotainment data, deleting each one 

will lead to worse performances.  For example, removing the 

slot-based trigger features from the joint framework 

increases the WER of the resulting model to 7.28%. 

3.3. Experimental Results on ATIS Data 

On ATIS data, all types of features are observed beneficial 

except BLSTM feature, possibly because the hypotheses are 

generated by one engine and are highly similar in sentence 

embedding.  We thus remove the BLSTM features from the 

ranking frameworks and the results are shown in Table 2.  

We can see that the ASR-alone framework achieves the best 

performance, obtaining 21.9% relative reduction in WER 

over state-of-the-art Google ASR performance (i.e., “top-

scored hypo.”).  Joint training with intent detection brings no 

improvement in this case, also because of the high similarity 

among the hypotheses, which typically bear the same intent.  

The improvements achieved on ATIS are bigger than those 

on the infotainment data, possibly because more hypotheses 

with lower oracle performance are used in ranking for ATIS.  

For ATIS data, adopting the soft target values is critical.  

Using one-hot target values instead in the training of ASR-

alone framework increases the resulting WER to 6.68%.   

Table 2. Results on ATIS testing data. 

 WER% Intent Error% Slot F1 

Oracle hypo. +NLU  1.24 2.58 94.05 

Top-scored hypo. +NLU 6.53 3.92 90.89 

ASR-alone Framework 5.10 3.25 92.50 

Joint Framework 5.51 3.36 91.93 

 

4. CONCLUSION 

 

In this paper, we proposed a novel network framework to 

rank competing hypotheses for a speech utterance, which is 

shown effective no matter the hypotheses are generated by 

multiple ASR engines or one engine.  The framework is 

trained with soft target values, using not only ASR related 

but also NLU related features.  Joint training the framework 

with intent detection is found beneficial when the hypotheses 

come from different types of engines.  The framework can 

be further refined/improved in various directions, such as 

introducing new features and improving the network design.  
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