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ABSTRACT

Improving the representation of contextual information is key to
unlocking the potential of end-to-end (E2E) automatic speech recog-
nition (ASR). In this work, we present a novel and simple approach
for training an ASR context mechanism with difficult negative ex-
amples. The main idea is to focus on proper nouns (e.g., unique en-
tities such as names of people and places) in the reference transcript
and use phonetically similar phrases as negative examples, encour-
aging the neural model to learn more discriminative representations.
We apply our approach to an end-to-end contextual ASR model that
jointly learns to transcribe and select the correct context items. We
show that our proposed method gives up to 53.1% relative improve-
ment in word error rate (WER) across several benchmarks.

Index Terms— speech recognition, sequence-to-sequence mod-
els, phonetics, attention, biasing

1. INTRODUCTION

End-to-end (E2E) models for ASR became popular in the last few
years, as a way to replace the acoustic, language and pronunciation
models of the ASR system with a single neural network [1, 2, 3, 4, 5].
Recently, E2E models have achieved state-of-the-art performance on
a Voice Search task [6]. However, these models do poorly on rare
and out-of-vocabulary (OoV) words. This issue is even more ap-
parent when the system must recognize user-specific contextual in-
formation, which is an important component of a production-level
ASR system [7]. User context can include the user’s favorite songs,
contacts or apps, which often contain rare words.

An effective remedy to this problem is to inject additional con-
text into the system, to both inform the system on the possible pres-
ence of specific rare words as well as help it to identify more likely
phrases. One possibility to introduce context to an E2E system is
to interpolate the E2E model with an externally trained contextual
language model [8], a process known as “shallow fusion”. Alter-
natively, [9] explores an all-neural approach for contextual biasing,
by embedding a set of contextual phrases and allowing the decoder
of the E2E model to attend to these contextual phrases. This ap-
proach was found to outperform shallow-fusion biasing on many
tasks. However, if the context contains similarly sounding phrases
(e.g., when both “Joan” and “John” are in the user’s contact list) -
disambiguation of the correct phrase remains challenging.

In ASR, two phrases can be very similar to each other phonet-
ically (i.e., in the way they sound), but be unquestionably different
(e.g., “call Joan” and “call John”). For a neural ASR model, the
learned representations for these names might be very similar, lead-
ing the model to predict the wrong one. This problem is especially
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challenging for E2E ASR models presented with rare and difficult
to spell words - as the model might not observe these words at all
during training, and will thus fail to spell them correctly at test time.

In this work, we present an approach for focusing on rare phrases
during training and teaching the model to distinguish these phrases
from phonetically similar ones. Using this approach, we expect the
model to learn more robust representations that will help it to per-
form better at test time. The main ideas are to (i) detect difficult to
transcribe and rare words in the input utterance as the target of fo-
cus, and (ii) train harder on these words by providing the model with
difficult negative examples.

For detection of the phrases to focus on ((i)), we find that proper
nouns (also tagged as “NNP” [10]) are the general category of
phrases that are rare and usually more difficult to transcribe, while
being relatively easy to detect [11, 12, 13]. For training harder
on these phrases ((ii)), we extract phonetically similar alternative
phrases, and feed those to the model as negative examples.

This approach can be thought of as data augmentation for
speech. While data augmentation is usually used in machine learn-
ing for generating mutated positive examples [14, 15], our approach
is used for generating mutated negative examples. We apply our
approach to the recently proposed Contextualized Listen, Attend,
and Spell model [9] and show that the proposed method gives up to
a 53.1% relative improvement in WER across several benchmarks
that represent Google’s voice search contextual traffic.

2. BACKGROUND: CLAS MODEL

The Contextual Listen, Attend, and Spell (CLAS) model [9] is an
E2E ASR system based on the Listen, Attend and Spell (LAS) model
[1], with the key difference that it also utilizes context. This model
was shown to be a strong all-neural approach for contextual biasing.

The CLAS model outputs a probability distribution P (y|x,z)
over sequences of output labels y (graphemes, in this work) condi-
tioned both on a sequence of input audio frames x = (x1, . . . ,xK)
and a set of bias phrases z = (z1, . . . , zN ) - a set of word n-grams,
some of which might appear in the reference transcript. For example,
if a user says to a speech-enabled device call joan’s mobile,
the system can leverage all the contacts in the device to serve as
bias phrases, hopefully attending on a contact name which is called
joan. A special “n/a” symbol is used to allow the model not to use
any of the bias phrases at a certain decoding step.

CLAS uses an attention-based encoder-decoder architecture [4]
with two encoders: an audio encoder, which computes embedding
for the audio inputs x, and a bias-encoder which embeds the context
phrases z. At each decoding step, the decoder attends to the audio
inputs and simultaneously attends to the set of bias phrases, where
the decoder state, dt is used as attention-query. CLAS emits its
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predictions a label at a time, conditioned on inputs and on previous
predictions: P (yt|y<t;x;z). Figure 1 illustrates the CLAS model.
For a full description we refer the reader to [9].

Fig. 1: A schematic illustration of the CLAS architecture [9].

In the original CLAS model [9], during training, the bias phrases
were randomly sampled n-grams from the reference transcript and
other utterances in the training data. At test time, the bias phrases
were all from the same semantic category (e.g., contact names). This
made the test task harder than the training task, since distinguish-
ing between first names (such as: joan vs. john) is usually more
challenging than distinguishing between random unrelated n-grams.

To close this train-test discrepancy, in this work we sample
proper nouns from the reference transcript instead of random n-
grams, making the model focus on more rare words and names.
Furthermore, we augment each of these proper nouns with pho-
netically similar alternatives. For example, in call joan’s
mobile, we select joan as a bias phrase (because it is a name of a
person and thus a proper noun), and phonetically similar names such
as john and jean as negative examples. This approach allows to
train the model on a more difficult task of distinguishing between
phonetically similar names.

3. TRAINING CLAS WITH DIFFICULT EXAMPLES

We now explain the major components of our approach. Given a ref-
erence transcript, our goal is to construct a set of bias phrases. First,
we extract proper nouns from the reference (Section 3.1); second, we
add phonetically similar (“fuzzy”) alternative phrases (Section 3.2).
We then use the set of extracted proper nouns with their fuzzy al-
ternatives as the set of bias phrases for training the model on that
example. Figure 2 illustrates our approach in a high-level.

Fig. 2: Our approach of detecting proper nouns and augmenting
them with phonetically similar alternatives, for creating sets of bias
phrases for training.

3.1. Detecting proper nouns

During training we restrict our choice of bias phrases to proper
nouns. To achieve this, we analyze each reference transcript with
a Part-Of-Speech (POS) tagger. We use Google’s Cloud Natural
Language API [16] for POS tagging, which employs neural models
similar to [11, 12]. The POS model was trained using about 1, 700
English news and web documents, containing about 500k tokens.

3.2. Obtaining fuzzy alternatives

Once we have identified a set of proper nouns from the reference
transcript, we next generate fuzzy alternatives as additional bias
phrases for training. We define a word n-gram w1, as a fuzzy al-
ternative of a word n-gram w2, if both are phonetically similar and
co-occur often in different decoding beams of the same utterances
in training data. This process is described as follows.

First, we start by building a fuzzy inventory that stores for each
n-gram w a set of fuzzy alternatives. We build the fuzzy inventory
in an unsupervised manner, by utilizing an external conventional
model, trained as in [17], which we use to decode a large corpus of
utterances. For each decoded utterance we obtain a set of hypothe-
ses. We then count all the co-occurrences of n-gram pairs that appear
in different hypotheses where the rest of their hypotheses are iden-
tical, and each pair is scored according to that count. For instance,
“john lemon” will get a high score with “john lennon” if these can
be often found in different hypotheses of the same utterances.

Next, we use the fuzzy inventory during CLAS training. Specifi-
cally, given a word n-gram representing a bias phrase, fuzzy alterna-
tives are selected from the fuzzy inventory and are sorted according
to the co-occurrence score. We further filter the top ranking candi-
dates by keeping only those that are phonetically similar to our target
n-gram, where phonetic similarity is measured using the Hixon met-
ric [18]. This process of selecting fuzzy bias phrase alternatives is
done as part of the data preparation phase.

4. EXPERIMENTS

Our evaluation aims to answer whether training a model using our
proposed approach improves the results over CLAS, which is a
strong all-neural baseline approach for contextual biasing [9]. We
use the same architecture, training and test corpora as [9]. The
baseline CLAS model is fed with random n-grams from the ref-
erence transcript and other random n-grams from the rest of the
training data as bias phrases. In contrast, in our proposed approach
we select proper nouns from the reference transcript (as detailed in
Section 3.1) and phrases that are phonetically similar to the selected
proper nouns (as detailed in Section 3.2). At test time, all of the
models are presented with the same bias phrases for each example.

4.1. Experimental Setup

Our training setup is very close to [9]. Our training set includes
∼25,000 hours of audio consisting of 33 million English utterances,
anonymized and hand-transcribed, representative of Google’s voice
search traffic. This data set is augmented by artificially corrupting
clean utterances using a room simulator, adding varying degrees of
noise and reverberation such that the overall SNR is between 0dB
and 30dB, with an average SNR of 12dB [15]. The noise sources are
from YouTube and daily life noisy environmental recordings. The
models are trained on 8 × 8 Tensor Processing Units (TPU) slices
with global batch size of 4,096. Each training core operates on a
shard-size of 32 utterances in each training step.

We use 80-dimensional log-mel acoustic features computed ev-
ery 10ms over a 25ms window. Following [6] we stack 3 consecutive
frames and stride the stacked frames by a factor of 3. The encoder’s
architecture consists of 10 unidirectional LSTM layers, each with
256 nodes. The encoder-attention is computed over 512 dimensions,
using 4 attention heads. The bias-encoder consists of a single LSTM
layer with 512 nodes and the bias-attention is computed over 512 di-
mensions. Finally, the decoder consists of 4 LSTM layers with 256
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nodes. In total, the model has about 58 million trainable parameters
and is implemented using TensorFlow [19] and Lingvo [20].

4.2. Test sets

Test Set Number of
utterances

Avg number of
bias phrases

Songs 15k 303
Contacts 15k 75
Talk-To 4k 3,255
Voice Search 14k -
Dictation 15k -

Table 1: The test sets. Voice Search and Dictation do not contain
any bias phrases and are thus testing a pure ASR task.

Table 1 presents a summary of the test sets. Specifically, each
of Songs, Contacts, and Talk-To contains utterances with a distinct
set of bias phrases which vary from four phrases up to more than
three thousand phrases. The test examples were artificially gener-
ated using a Parallel WaveNet [21] text-to-speech (TTS) engine, and
corrupted with noise similar to the training data [15]. We refer to the
Songs, Contacts and Talk-To as “contextualized test sets”, as these
contain context relevant for recognition (e.g., contact names, songs
names and chatbot names). For more information regarding these
test sets see [9]. The Voice Search and Dictation test sets are com-
posed of anonymized and hand-transcribed utterances, sampled from
real traffic. They do not include contextual information, and are thus
referred to as the “context-free test sets”. We use the context-free
test sets to evaluate the models on a pure ASR task (Section 4.6).

4.3. Compared models

We compare several models that have the same architecture but were
trained with a different mix of bias phrases for each example:
“Vanilla” CLAS - was trained with random n-grams from the refer-
ence transcript and other unrelated random n-grams from the rest of
the training data as bias phrases (as in [9]).
CLAS+NNP - was trained with proper nouns as bias phrases, both
from the reference transcript and other random proper nouns from
the rest of the training data.
CLAS+fuzzy - was trained with random n-grams from the reference
transcript, their fuzzy alternatives, and other random n-grams from
the rest of the training data and their fuzzy alternative.
CLAS NNP+fuzzy - combined both of the approaches: the bias
phrases contained proper nouns from the reference transcript, their
fuzzy alternatives, and other random proper nouns.

The overall max size of the set of bias phrases in each training
scheme was the same (64), the only differences between the com-
pared models were (i) which bias phrases were selected from the ref-
erence transcript - random n-gram or proper nouns; and (ii) whether
we included their fuzzy alternatives or only random phrases. In the
models that use proper nouns, at most 3 proper nouns are selected
at random from each example. In the models that use fuzzy alterna-
tives, 3 fuzzy alternatives are added for each source phrase.

4.4. Biasing task

Table 2 shows the results for each of the compared training schemes,
across the contextualized test sets. As shown, CLAS NNP+fuzzy
decreases the WER compared to Vanilla CLAS by 44.9% on Songs,
53.1% on Contacts, and 25.7% on Talk-To. On Songs and Con-
tacts, using proper nouns (CLAS+NNP) contributes the most, while

Test Set Vanilla
CLAS CLAS+NNP CLAS+fuzzy CLAS

NNP+fuzzy

Songs 9.8 6.7 (31.6%) 10.4 5.4 (44.9%)
Contacts 11.3 6.1 (46.0%) 16.5 5.3 (53.1%)
Talk-To 15.2 14.8 (2.6%) 11.1 (27.0%) 11.3 (25.7%)

Table 2: WER of the compared models on the biasing task. The
relative improvement over Vanilla CLAS appears in parentheses (if
the model improves).

fuzzy (CLAS+fuzzy) degrades the result. Surprisingly, their com-
bination (CLAS NNP+fuzzy) achieves a lower WER than each of
them solely. On Talk-To, using proper nouns (CLAS+NNP) makes
a minor improvement of 2.6%, fuzzing solely (CLAS+fuzzy) im-
proves by 27%, and using both proper nouns and fuzzing (CLAS
NNP+fuzzy) achieves almost the same WER as fuzzing only. We
find the CLAS NNP+fuzzy model to perform the best, while taking
the best out of each of its combined techniques.

4.5. Varying the number of bias phrases
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Fig. 3: CLAS NNP+fuzzy achieves the lowest WER with a small
set of bias phrases, and almost the lowest WER (0.2 higher than
CLAS+fuzzy) when presented with 3255 bias phrases. This experi-
ment was performed on the Talk-To set.

To further understand the source of improvement, we varied the
number of bias phrases in Talk-To, which has the largest number of
bias phrases. We included only the correct bias phrases (the ones that
were extracted from the reference) and a varying number of other
distracting phrases, between 0 and 3, 255. As shown in Figure 3,
CLAS+NNP achieves a low WER when presented with a small set of
bias phrases (which is consistent with the superiority of CLAS+NNP
on Songs and Contacts), but performs worse on the full set; in con-
trast, CLAS+fuzzy scales well to a large number of bias phrases and
achieves the lowest WER when presented with the full set of 3, 250
bias phrases, but does not utilize small sets, even when presented
only with the correct phrases; CLAS NNP+fuzzy takes the best out
of both world: it achieves the lowest WER on small sets of bias
phrases thanks to the use of proper nouns, and achieves almost the
lowest WER (only 0.2 higher than CLAS+fuzzy) on the full set of
bias phrases thanks to the use of fuzzy alternatives.

4.6. Pure ASR task

We evaluate each of the trained models on the context-free test sets
which do not contain any bias phrases, and thus evaluate each model
on a pure ASR task. The trained models are the same as in Sec-
tion 4.4 and only the test sets are different, since we seek for a single
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Test Set Vanilla
CLAS

CLAS
NNP+fuzzy

CLAS
NNP+fuzzy

αdrop = 5%

CLAS
NNP+fuzzy

αdrop = 30%

Pure ASR Tasks
Voice Search 6.4 8.8 7.7 6.8
Dictation 5.6 6.2 5.9 5.5

Biasing Tasks
Songs 9.8 5.4 5.5 6.6
Contacts 11.3 5.3 5.1 5.7
Talk-To1 8.9 8 8.1 8.1

Table 3: WER for the Pure-ASR tasks. Loses on the Pure-ASR task
can be almost recovered with αdrop = 30% while improving on the
biasing task compared to Vanilla CLAS.

trained model that performs well on multiple tasks. When evaluated
on these test sets, the models are trained as usual, with bias phrases,
but not presented with any of those at test time.

Table 3 shows the results of each of the compared training
schemes, across the context-free test sets. As shown, while CLAS
NNP+fuzzy significantly improves over Vanilla CLAS on the bias-
ing task (Section 4.4), the improvement comes at the cost of degrad-
ing Pure-ASR performance (Table 3). To address this degradation,
we introduce a parameter αdrop: during training, each example
is presented with no bias phrases with probability of αdrop, thus
making the model train on a pure ASR task in those cases.

As shown in Table 3, using αdrop = 5% improves the WER
in the pure ASR task compared to CLAS NNP+fuzzy (which uses
αdrop = 0%), while having a negligible impact on Songs and Con-
tacts. Using αdrop = 30% further improves the WER on the pure
ASR task, without much negative impact on the biasing tasks, while
still achieving much lower WER for on biasing tasks compared to
Vanilla CLAS. Further tuning of the value of αdrop allows to tune
the trade-off between succeeding on biased and unbiased ASR tasks.

5. QUALITATIVE ANALYSIS

In this section we try to understand the differences in the internal
representations that training with fuzzy distractors causes. We in-
spect the attention that the model has given to proper nouns through
the decoding time steps, across different models. We use the same
trained models as before, but to amplify the differences we evaluate
them with one bias phrase that can be found in the transcript and
9 fuzzy alternatives. We inspect the attention weights through the
decoding steps. We compare the CLAS+NNP model with CLAS
NNP+fuzzy model, and thus inspect the effect of fuzziness. Since
both models were trained on proper nouns, for brevity in this section
we will omit the term “NNP” and refer to the CLAS NNP+fuzzy as
“the fuzzy model” and to CLAS+NNP as “the non-fuzzy model”.

In each of the following figures, the X-axis represent the decod-
ing time steps; the Y-axis contains the top attended bias phrases by
the model (the true phrase is marked with “**”); and brighter pixels
represent higher attention weights by the model per bias phrase and
time step. We classify the differences into two main categories.

5.1. Better discrimination

In many cases, we observed that when presented with phonetically
similar phrases at test time, the fuzzy model simply captures the
subtle phonetic differences better than the non-fuzzy model. This is

1In the experiments described in Table 3 we found it useful to evaluate
Talk-To with bias-conditioning as described in [9], as otherwise the model
with αdrop = 30% became too sensitive to the large number of bias phrases.

expressed by both a more accurate prediction and more attention on
the bias phrase that actually appears in the reference transcript rather
than its fuzzy alternatives. This affirms our hypothesis that training
using fuzzy distractors makes the model discriminate phonetically
similar phrases better. Figure 4 shows an example.

True ref: creepy carrots</bias>

Fuzzy: creepy carrots</bias> Non-fuzzy: sleepy carrots</bias>

Fig. 4: The fuzzy model attends mostly to “creepy carrots” and
makes a correct prediction, while the non-fuzzy model attends to
“sleepy carrots” and predicts the wrong word “sleepy”.

5.2. Cleaner attention distribution

We observed that even when the predictions of both models are cor-
rect, the fuzzy model usually attends more sharply and its attention
distribution is much cleaner than the non-fuzzy model, which in-
cludes incorrect phrases in its attention. Figure 5 shows an example.

True ref: houston community college missouri city</bias>

Fuzzy: houston community college missouri city</bias>

Non-fuzzy: houston community college missouri city</bias>

Fig. 5: Both of the models predict the correct transcript, but the
attention distribution of the fuzzy model is much cleaner and sharper.

6. CONCLUSION

In this work we presented a general approach for training contextual-
ized neural speech recognition models with difficult negative exam-
ples. The core idea is to detect and focus on proper nouns (“NNP”)
in the reference transcript, and present the model with phonetically
similar (“fuzzy”) phrases as their negative examples.

We demonstrate our approach by applying it to a speech biasing
task, and show that our approach improves WER by up to 53.1%.
By using mixed training we are able to tune the trade-off between
accuracy on the biasing and the pure ASR tasks. We analyze the
contribution of each of the components of our approach and discover
interesting phenomena in the model’s internal attention that are con-
sistent with our results. We believe that the principles presented in
this paper can serve as a basis for a wide range of speech tasks.
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