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ABSTRACT
We show that confidence measures estimated from local posterior
probabilities can serve as objective functions for training ANNs in
hybrid HMM based speech recognition systems. This leads to a
segment-level training paradigm that overcomes the limitation of
frame-level updates ignoring the sequence structure in speech. We
propose measures that train at the state and phone segment levels,
while still decoding in the conventional framework. Experimental
results on multiple corpora show that such trainings not only yield
better systems in terms of performance, but also give additional im-
provements with sequence discriminative training. These techniques
generalise across front-ends and model architectures, and efficiently
handle the effect of segment duration variations on the ANN train-
ing.

Index Terms— Speech recognition, confidence measures, local
posterior probability, segment-level training.

1. INTRODUCTION

An automatic speech recognition (ASR) system converts speech sig-
nals into sequences of words or text. In hidden Markov model
(HMM) based ASR, the likelihood of an HMM state qt at the time
frame t, labelled li, is estimated [1] as:

p(xt|qt = li) =

D∑
d=1

p(xt, a
d|qt = li)

=

D∑
d=1

P (ad|qt = li) · p(xt|ad, qt = li) (1)

=
D∑

d=1

P (ad|qt = li) · p(xt|ad) , (2)

where xt denotes the acoustic feature observation at t, li ∈
{1, . . . , I} and {ad}Dd=1 denotes a set acoustic units. Eqn. (2) results
from the assumption that xt ⊥⊥ qt|ad. In the case of a context de-
pendent subword unit based ASR system, I is the number of context-
dependent subword units; D is the number of clustered context-
dependent states; and the vector [P (ad|qt = li)]Dd=1 is either a
Kronecker delta distribution or a soft distribution depending upon
whether the relationship between ad and state qt = li is determin-
istic or probabilistic [1]. In standard HMM-based ASR systems this
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relationship is deterministic given the state tying decision tree, i.e. if
li 7→ ad

′
then P (ad

′
|qt = li) = 1 and P (ad|qt = li) = 0 ∀d 6= d′.

p(xt|ad) can be estimated either using Gaussian mixture models
(GMM) or using artificial neural networks (ANN). In the case of
ANNs, p(xt|ad) is estimated as a scaled-likelihood psl(xt|ad) [2]:

psl(xt|ad) =
p(xt|ad)

p(xt)
=
P (ad|xt)

P (ad)
, (3)

whereP (ad|xt) denotes the posterior probability of the acoustic unit
ad estimated by the ANN and P (ad) is its prior probability.

The focus of this paper lies in the training of the ANNs to es-
timate P (ad|xt). The ANN can be trained using embedded Viterbi
expectation-maximisation (EM) algorithm. In the expectation step
(E-step), given the current neural network, an alignment between
the HMM state sequences and the acoustic feature sequences is ob-
tained. In the maximisation step (M-step), given the alignment, a
new neural network is trained. In practice, to reduce the training
time, the alignments are typically obtained using an HMM/GMM
system and the M-step is carried out once [3, 4].

Although the alignment is obtained by imposing a sequence
structure, the ANN is trained using an individual frame-level dis-
criminative criterion, viz. cross-entropy (CE). This training criterion
corresponds to a maximum mutual information (MMI) estimation of
parameters in terms of classifying phones [5]. However, this may
be sub-optimal since the sequence structure in the data is being ig-
nored. One class of methods which can address this limitation is
segmental models [6], where the HMM states emit segments instead
of frames. These ideas have been used in ANN- and deep learn-
ing based models. Such methods often depend on the availability of
segment boundaries in the data, and thus require an additional com-
plexity to determine and handle variable length segments both during
training and decoding. We mention a few examples among numer-
ous works in the literature here. Austin et al. converted segments
into fixed length segments by sampling the segments linearly [7].
This requires an additional rescoring process during decoding after
the first pass, since an initial segmentation is unavailable during
real-time testing. Abdel-Hamid et al. use similar sampling meth-
ods to carry out training, but expensively loop over multiple pos-
sible segment boundaries during decoding [8]. Zweig and Nguyen
used a conditional random field based backend to combine outputs
at multiple segment levels [9]. Kong et al. used a recurrent archi-
tecture [10] and Beck et al. used an encoder-decoder based frame-
work [11]. Another class of methods that handle segments of speech
together are sequence discriminative training (SDT) [12, 13] meth-
ods, where the training objectives are computed at sequence levels,
while keeping the model complexity unaltered.

In this paper we first establish a link between the estimation
of linguistic unit level confidences using P (ad|xt) [14, 15] and
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the training of neural networks. Through this link we propose
a segment-level training paradigm that requires no architectural
changes or sophistication, and can be envisaged as a maximisation
of segment- or linguistic unit level confidences. In other words, it
can be viewed as the maximisation of the match between linguistic
units and segments of acoustic feature observations. Through experi-
mental studies on multiple corpora, we show that the proposed train-
ing methods lead to significantly better systems than using frame
level cross entropy criterion. Furthermore, we also show that these
gains are sustained or boosted further with sequence discriminative
training.

The remainder of the paper is organised as follows. Section 2
presents the proposed method of segment level training. Section 3
describes the experimental setup and gives the results. Section 4
presents an analysis of the proposed approach. Section 5 finally con-
cludes the paper, indicating the future directions.

2. PROPOSED SEGMENTAL TRAINING APPROACH

In ASR related applications, confidence measures are used to meas-
ure how well an acoustic observation sequence X = (xt)

T
t=1 =

(x1, . . . ,xt, . . . ,xT ) and a word hypothesis W = (wr)Rr=1 match,
given the trained parameters of the system. In a similar vein, the
training of the ANN for ASR can be posed as finding the paramet-
ers that maximise the match between between X andW . In both the
cases, matching X andW is a common factor; where higher the con-
fidence, better the match. Given this understanding, in this section
we show that confidence measures based on “local posterior” prob-
ability estimates P (ad|xt) can naturally serve as objective functions
for a segment-level training of the ANNs.

2.1. Segment-level confidence estimation from local posteriors

Let W = (wr)Rr=1 constitute a sequence of phones (phk)Kk=1, and
further constitute a sequence of sub-phonemic HMM states (sj)

J
j=1

as defined by the topology. In the framework of acceptor HMMs
[16, 2], various confidence measures based on local posterior prob-
ability estimates have been proposed. Specifically, given an align-
ment between X and W and the local posterior probability estim-
ates, one of the methods to estimate the HMM state level confidence
CM(sj) is by rescoring the state segment sj as

CM(sj) =

∑e(sj)

t=b(sj)
log
(
P (qt = lj |xt)

)
e(sj)− b(sj) + 1

, (4)

where lj is its label, and b(sj) and e(sj) denote its beginning and
end frames respectively. This is computed, given the one-to-one map
between the state lj and the set of acoustic units {ad}Dd=1. In other
words, if lj 7→ ad

′
then

CM(sj) =

∑e(sj)

t=b(sj)
log
(
P (ad

′
|xt)

)
e(sj)− b(sj) + 1

. (5)

A word level confidence wCM(wr) for the word wr constituting
the state sequence (sj+m)

Mwr
m=1 can be further estimated as [14]

wCM(wr) =
1

Mwr

Mwr∑
m=1

CM(sj+m), (6)

where Mwr is the number of states in wr .

ANN

Le
xi

co
n 

&
H

M
M

 t
op

ol
og

y

St
at

e 
ty

in
g

D
ec

isi
on

 t
re

e

Viterbi path

Fig. 1. Estimating state confidences from local posterior probabilit-
ies.

Let ydsj = P (ad|qt = lj); then the vector ysj = (ydsj )Dd=1 de-
scribes the mapping from sj to {ad}Dd=1. As illustrated in Fig. 1,
this mapping is typically defined by the state tying decision tree. In
other words, the sequence (sj)

J
j=1 that corresponds to a word hypo-

thesis is mapped to Y =
(
ysj

)J
j=1

. Similarly, let zdt = P (ad|xt);

then the vector zt = (zdt )Dd=1 denotes the output of the ANN at the
time frame t and we can define the sequence Z = (zt)

T
t=1 that cor-

responds to an acoustic observation. Without loss of generality, the
estimation of confidence by rescoring can be expressed as a match-
ing of the two posterior probability sequences Y and Z with a local
cost based on Kullback-Leibler divergence KL

(
ysj ‖ zt

)
. More

precisely,

CM(sj) =

∑e(sj)

t=b(sj)
−KL

(
ysj ‖ zt

)
e(sj)− b(sj) + 1

. (7)

It can be verified that, as ysj is a Kronecker delta distribu-
tion given sj 7→ d′, KL

(
ysj ‖ zt

)
reduces to cross entropy

− log
(
P (ad

′
|xt)

)
.

It is worth mentioning that Eqn. (7) can be generalised further
to the case when ysj is a soft distribution, as computing the KL-
divergence between two probability distributions is equivalent to hy-
pothesis testing [17, 18]. Indeed such confidence measures have
been employed earlier for utterance verification [19] and for non-
native speech assessment [20] tasks.

2.2. Segment-level training of the ANNs based on confidence
measures

Given the segmentation of the training data, the ANN training is
treated as a separate classifier training, by one hot encoding of the
targets and minimising a frame level cross entropy criterion

Ef (t) = KL (δd ‖ zt)

= − log
(
P (ad|xt)

)
, (8)

where δd is a Kronecker delta distribution based on a one-hot encod-
ing and zt is the output of the ANN. From this perspective, given the
pairs of input features and their target classes as tuples, there is no
difference in the training mechanism whether one wants to classify
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Fig. 2. Training from state level confidence scores.

phones, speakers, images, text or so on. This is a non-segmental way
to train ANNs.

On the contrary, given the understanding from Section 2.1, the
ANN training for hybrid HMM/ANN ASR can be formulated as
finding the parameters that increase the match between the obser-
vation sequences and the sequence of states or segments. More pre-
cisely, as illustrated in Fig. 2, the error function can be based on
rescoring of the segments, i.e. based on confidence measures. It is
important to mention that whilst the notion of one-hot-encoding of
the targets comes from a pattern classification point of view, in our
formulation one-hot-encoding results from the one-to-one mapping
between the states and {ad}Dd=1. As discussed earlier the targets can
be soft, i.e. the map between the states and {ad}Dd=1 can be prob-
abilistic. Furthermore, as shown earlier as well as in the literature,
the cross entropy error criterion emerges from KL-divergence with
the target distributions being Kronecker delta distributions [21]. In
the case of soft targets, it corresponds to an additional entropy term
of the target distributions, that remains constant with respect to the
ANN parameters, and thus makes no difference in the training.

In the case where the segments represent HMM states, a state-
level error function Es(sj) that can be defined to minimise in a
stochastic gradient descent training is

Es(sj) = −CM(sj) =

∑e(sj)

t=b(sj)
KL
(
ysj ‖ zt

)
e(sj)− b(sj) + 1

, (9)

while in the case where the segments represent phone units, a phone-
level error function Eph(phk) that is minimised can be based on
Eqn. (6):

Eph(phk) =
1

Nphk

Nphk∑
n=1

E(sj+n), (10)

where the phone phk constitues Nphk states: (sj+1, . . . , sj+Nphk
).

The decoding process remains unaltered, except that the priors
P (ad) in Eqn. (3) are estimated from the state segment counts rather
than from the frame label counts.

3. EXPERIMENTAL STUDY

In this section, we investigate the effect of the proposed segment
level ANN training on ASR and phone recognition performances.

3.1. Data setup

We conducted ASR experiments on Mediaparl [22] and AMI [23]
data sets. Mediaparl is a bilingual corpus containing data (debates)
in both Swiss German (denoted as M-DE) and Swiss French (de-
noted as M-FR) which were recorded at the Valais parliament in
Switzerland. Valais is a bilingual state which has both French and
German speakers with a high variability in their local accents. We
performed studies on both the M-DE and M-FR parts of the data
set. We followed the protocols set in [22] for their data preparation,
pronunciation lexicon selection and language model (LM) building.
AMI is a meeting room corpus with data collected through an in-
dividual headset microphone (IHM), as well as a microphone array.
We conducted the studies on the IHM data set. We conducted phone
recognition studies on TIMIT corpus [24]. We followed the standard
Kaldi protocols for AMI and TIMIT. Table 1 provides a description
of the experimental setup for all the data sets.

Table 1. Experimental setup on various corpora.

AMI M-DE M-FR TIMIT

Training hours 77.3 14.5 16.1 3.1
Phone set count 176 57 38 48
Vocabulary size 52.5k 16.7k 12.4k 48
LM order 3-gram 2-gram 2-gram 2-gram

3.2. Systems

We built ASR systems using Kaldi toolkit and Keras/Tensorflow
tools. We used 39 dimensional Mel frequency cepstral coefficients
(MFCC), C0−C12 +∆+∆∆, as the acoustic feature observations.
AMI and TIMIT used the default speaker-level cepstral mean and
variance normalisation (CMVN) in Kaldi setup, while M-DE and
M-FR used an utterance-level CMVN.

The alignments for the training of ANNs were obtained us-
ing Kaldi pipeline, by first building mono-tri3 HMM/GMMs and
then building subspace GMM (SGMM) systems, which operate in
three passes for decoding and alignment. The number of clustered
context-dependent states for AMI, M-DE, M-FR and TIMIT were
4490, 2282, 2265 and 2112 respectively. The alignments for each
data set was obtained from its corresponding SGMM system. For
AMI, it is worth mentioning that the SGMM system development
and the subsequent ANN training were carried out on the 70.2 hour
subset of data with clean segmentation.

For each data set, we trained three deep neural networks (DNNs)
corresponding to the three error functions Ef , Es and Eph. All the
DNNs had three hidden layers with 1024 units with rectified linear
activations in each hidden layer. The input to the DNNs were 13
dimensional MFCCs with five frames each in the preceding and the
following context and with ∆ + ∆∆, i.e. 429 dimensional feature
input. The training was based on stochastic gradient descent with a
decaying learning rate. Post this training, we also used a standard
sequence discriminative training, viz. state-level minimum Bayes
risk (sMBR), for AMI, M-DE and M-FR corpora.

3.3. Results

Table 2 shows the word error rates (WER) on AMI, M-DE and M-FR
corpora and phoneme error rate (PER) for TIMIT corpus. +sMBR
row presents the performance with an additional sMBR training. It
can be observed that Es and Eph based trainings outperform Ef
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Table 2. Eval set WER on AMI, M-DE and M-FR corpora, and PER
on TIMIT.

Error function −→ Ef Es Eph

AMI 32.4 30.5 30.4
+sMBR 30.4 28.4 28.4

M-DE 20.5 19.9 19.6
+sMBR 19.7 18.7 19.0

M-FR 21.8 20.8 20.4
+sMBR 20.6 18.9 19.0

TIMIT 22.3 21.2 21.3

based training. It is interesting to observe that, across all the three
data sets, Es or Eph based trainings yield performances comparable
to the Ef based training followed by sMBR.

4. ANALYSIS

This section presents an analysis of the proposed approach.

4.1. Generalisation to different architectures and front-ends

The proposed segment-level training approach does not presume any
particular feature, front-end processing or ANN architecture. Nev-
ertheless, a question that arises is whether the observations made
in the previous section generalise across different architectures and
front-ends. To investigate this, we conducted two ASR studies:

1. Training systems on the AMI data set with feature-space max-
imum likelihood linear regression (fMLLR) speaker trans-
form based features and 25-frame splicing, concatenated with
speaker-level iVectors, modelled with DNNs comprising six
hidden layers with 2048 units each, and trained with dropout
on speed-perturbed data. Table 3 presents the performance
with the three error functions and with sMBR, as done be-
fore, in terms of WER.

Table 3. Performance on AMI data set with fMLLR+iVector front-
end.

Error function −→ Ef Es Eph

AMI 27.3 26.0 26.4
+sMBR 25.1 23.9 24.1

2. Training convolutional neural network (CNN) based systems
that take raw speech as input [25] on the M-DE data set. The
CNN-based systems comprised four convolutional layers fol-
lowed by three fully connected hidden layers with 1024 units
each. Table 4 presents their performances in terms of WER.

Table 4. CNN-based system performance on M-DE data set.

Error function −→ Ef Es Eph

M-DE 20.8 19.6 19.3

In both the studies, Es and Eph based trainings of the ANNs con-
sistently yield better systems than Ef based training.

4.2. Effect of the segment duration normalisation

Different phones can have different durations; this can vary due to
reasons such as the type of speech or speakers, for e.g. read versus
spontaneous speech, native versus non-native speakers, etc. Also,
the lengths of the silence portions can vary, for instance due to vari-
ations in a preceding voice activity detector’s performance. Such
differences in the durations of segments could affect the ANN train-
ing. Error functions Es and Eph inherently normalise the durations
of the segments, and thus may handle their variations better.

To investigate this, we simulated a study on the TIMIT corpus,
where silence was artificially added at the beginning and the end of
each utterance. We considered two cases: (a) two seconds of silence
is added at both the ends (4s/utt) and (b) five seconds silence is added
at both the ends (10s/utt). We trained three hidden layer DNNs cor-
responding toEf ,Es andEph error functions, as done earlier. Table
5 presents the results in terms of PER, when tested on silence-added
utterances. It can be observed that, when trained with Ef , the phone
recognition performance drastically degrades as the silence length
increases at both the ends of the utterances, while when trained with
Es or Eph the drop in the performance is significantly less. Invest-
igating the ability to handle phone duration variations is part of our
future work.

Table 5. PER on TIMIT corpus for the effect of segment dura-
tion normalisation study. 4s/utt and 10s/utt denote the addition of
2 seconds silence and 5 seconds of silence respectively at both the
ends of the utterance.

Error function −→ Ef Es Eph

TIMIT 4s/utt 23.0 22.0 21.8
10s/utt 35.6 22.7 22.5

5. CONCLUSIONS AND FUTURE WORK

This paper established a link between local posterior-based confid-
ence estimation in the acceptor HMM framework and the training
of ANNs in hybrid HMM/ANN based systems. Through this link,
we showed that the ANNs can be trained with error functions based
on linguistic segments, such as sub-phonemic segments and phone
segments as opposed to using a frame level cross entropy criterion.
Through experimental studies on multiple corpora, we showed that
such segment level trainings of ANNs yield better ASR systems.
These gains in the performances are also sustained with sequence
discriminative training. Furthermore, we demonstrated that the pro-
posed segment level training approach (a) is generalisable across
model architectures and front-ends, and (b) leads to systems that are
robust to duration variations.

In addition to providing a link to acceptor HMMs, the proposed
approach also provides a link to the Kullback-Leibler divergence
based HMM (KL-HMM) framework [26, 27, 1]. More precisely,
the sequence of target categorical distributions (ysj )Jj=1 can be re-
garded as the parameters of the KL-HMM states. This allows us to
incorporate the segment level training of ANNs into the embedded
Viterbi training of KL-HMMs, where the parameters of the ANN and
the KL-HMM are estimated in a recursive manner, and decoding is
performed with local score based on KL-divergence. In other words,
this link leads to a fully posterior based approach, where the ANN is
trained with soft targets. Our future work will focus on establishing
this link, along with the training of ANNs with error functions based
on segments larger than phones, such as at word and utterance levels.
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