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ABSTRACT

This paper presents an investigation on applying automatic speech
recognition (ASR) to speech assessment of people with aphasia
(PWA). A distinctive characteristic of PWA speech is paraphasia,
which refers to frequent occurrence of phonemic errors, unintended
words and non-verbal sounds. In view of the wide variety of para-
phasias, we propose to view the ASR errors so caused as out-of-
vocabulary (OOV) words. Inspired by previous research on OOV
detection, paraphasias in PWA speech are captured by comparing
the phone posteriorgrams of a strongly constrained speech recog-
nizer and a weakly constrained one. The posteriorgrams also reveal
other characteristics of impaired speech, e.g., change of speaking
rate, voice abnormality. Siamese and 2-channel convolutional neural
network (CNN) models are used for classifying the posteriorgram
pairs and predicting the severity of aphasia. Experimental results
on a Cantonese database of PWA speech confirm the effectiveness
of the proposed methods. The best F1 score attained on binary
classification (severe versus mild aphasia) is 0.891.

Index Terms— Aphasia, speech assessment, ASR, phone pos-
teriorgrams, CNN

1. INTRODUCTION

Aphasia is an acquired neurogenic speech-language disorder result-
ing from physical damage to specific brain regions. It may adversely
affect multiple communication modalities, including auditory com-
prehension, verbal expression, reading and writing [1]. In the aspect
of verbal expression, the most prevalent deficit among people with
aphasia (PWA) is anomia, which refers to word retrieval difficulty
[2]. People with dementia or progressive aphasia may also suffer
from anomia [3, 4]. Paraphasia is a dominant symptom of anomia.
It is characterized by the production of unintended words [5], which
comprises a few different forms: (1) phonemic, e.g., the target word
“pike” substituted by “pipe”; (2) verbal, e.g., “cat” substituted by
“dog”; and (3) neologistic, e.g., target word substituted by a gib-
berish word. In addition, anomic speech is typified by excessive
word-finding pauses [6]. Apart from anomia, symptoms like cir-
cumlocution, voice disorder and dysprosody may be present in PWA
at various severity level and with different combinations [7, 8].

Speech assessment is considered as an essential component in
the clinical process of evaluating the type and severity of aphasia.
Automatic speech recognition (ASR) technology has demonstrated
great potential in achieving automated analysis and assessment of
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PWA speech. In [9, 10, 11], impairment-related acoustic and text
features derived from ASR output were used to predict subjective
assessment scores. It was shown that the ASR accuracy on PWA
played a vital role in the feature extraction process. Multiple at-
tempts were made to improve acoustic model (AM) training with
domain adaptation [12, 13] and multi-task learning strategies [9, 11].
However, there seems to be a fundamental limitation on the ASR per-
formance for PWA speech, due to the wide variety of unseen phone-
mic errors and gibberish words. As a matter of fact, these paraphasia
symptoms are valuable markers for evaluating severity and type of
aphasia [14, 15]. The low ASR accuracy hinders reliable paraphasia
detection based on erroneous ASR output [13].

In the present study, we investigate a novel approach of apply-
ing ASR to extract speech features that are related to paraphasia,
speaking rate and voice abnormality. We propose to regard in-
tractable paraphasias as out-of-vocabulary (OOV) words in ASR.
Posterior-based confidence measures of ASR have been widely
used for detecting OOVs [16, 17, 18]. In [17], pattern comparison
between frame-level phone posteriors generated from concurrent
strong recognizer and weak recognizer was found to be useful in de-
tecting OOVs and ASR errors. We extend this approach by stacking
frame-level phone posteriors to form a 2-dimensional posteriorgram,
i.e., a time-posterior matrix. The discrepancies between the posteri-
orgrams from a strongly constrained recognizer based on lattice and
a weakly constrained one based on AM are exploited to quantify
the paraphasia and hence measure the severity of aphasia. In this
way, explicit detection of phonemic errors and gibberish words is
not required. Apart from paraphasia symptoms, the posteriorgrams
contain other impairment-related information, like rate of speaking,
pause duration, voice change, and atypical articulation [19].

weak

recognizer

strong

recognizer

CNN-based

classifier

phone

posteriorgrams

phone

posteriorgramsimpaird speech

segments from

a test speaker

segment-level

scores score

fusion

severity degree

Fig. 1: The proposed system for PWA speech assessment.

As shown in Fig. 1, given an input speech segment from a test
speaker, a pair of posteriorgrams is computed from a weak and a
strong recognizer. A convolutional neural network (CNN) is trained
to classify the posteriorgram pairs and generate a score of severity
for the speech segment. We investigate two different CNN models,
namely the Siamese [20] and 2-channel CNN [21], which were used
for comparing image patches. To obtain speaker-level assessment re-
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sult, a fusion process is applied to combine all segment-level scores
of the same speaker.

2. ASR SYSTEM FOR APHASIA ASSESSMENT

2.1. Corpus

Cantonese AphasiaBank (CanAB) is a large-scale multi-modal cor-
pus jointly developed by the University of Central Florida and the
University of Hong Kong [22]. The corpus contains recordings of
spontaneous speech from 149 unimpaired and 104 aphasic subjects.
The speech recordings were elicited in 8 narrative tasks, including
picture description, procedure description, story telling and personal
monologue. All impaired subjects participated in a standardized as-
sessment: Cantonese Aphasia Battery [15]. It involves a series of
sub-tests measuring speech fluency, naming abilities, etc. The sum
of sub-test scores is named the Aphasia Quotient (AQ). The value of
AQ (0-100) is an indication of overall severity of impairment. Lower
AQ value means higher degree of severity.

About 12.6 hours speech data from 101 unimpaired speakers
are used for AM training. The test set contains 1.8 hours speech
data from 17 unimpaired speakers and 12 hours speech data from 82
impaired speakers (AQ: 27.0-99.0). The training set and test set are
domain- and style-matched.

2.2. ASR System Setup

To mitigate the data scarcity problem for the development of ASR
system on impaired speech, we follow the multi-task learning ap-
proach as in our previous work [11]. The time-delay layers stacked
with bidirectional long short term memory layers (TDNN-BLSTM)
are trained with the domain-matched CanAB corpus and two large-
scale domain-mismatched Cantonese speech corpora (106.7h) us-
ing multi-task learning strategy (MT-TDNN-BLSTM). The domain-
matched CanAB is set as the primary task with the highest weight in
the loss function, while other two corpora are set as secondary tasks.
The phone set contains 32 Cantonese phones (13 vowels and 19
consonants), 1 silence and 1 laughter. A context-dependent GMM-
HMM (CD-GMM-HMM) AM is trained beforehand for each task to
obtain tied triphone state alignments. Refer to [11] for the details of
unimpaired corpora and CD-GMM-HMM AM training. Kaldi [23]
is used to train the AMs.

Input Features: 40-dimensional MFCCs without cepstral trun-
cation and 3-dimensional pitch features are extracted from speech
audios, with 25ms window length and 10ms window shift. Input
features are the concatenation of 100-dimensional i-vectors and 43-
dimensional features, where the 43-dimensional features are spliced
with context size of 5 frames (2 in past and 2 in future).

MT-TDNN-BLSTM: The TDNN-BLSTM contains 4 TDNN
layers (1024 neurons per layer) followed by 4 pairs of forward-
backward projected LSTM layers (1024-dimensional cells and 256-
dimensional recurrent projections). For the TDNN layers, the num-
ber of input contexts used to compute an output activation is [−2, 2]
at the 1st layer, {0} at the 2nd layer and [−1, 1] at the 3rd and 4th
layers. The combined TDNN-BLSTM layers are shared by all tasks.
Each task has an independent softmax layer for triphone state pre-
diction.

ASR Performance: The automatic transcription is decoded
with a syllable bi-gram language model (LM). It is trained with the
transcription of training data of CanAB. The system performance, in
terms of the syllable error rate (SER), is evaluated on the test set of
CanAB. For the 17 unimpaired speakers, the overall SER is 16.73%,

while the overall SER for 82 aphasia speakers is 38.20% due to the
language impairment. With this ASR system, we extract the phone
posteriorgrams based on the following recognizers.

3. POSTERIORGRAMS OF STRONG AND WEAK
RECOGNIZERS

3.1. Weak Recognizer vs. Strong Recognizer

The weak recognizer is a phone posterior estimator based on the MT-
TDNN-BLSTM AM. Frame-level phone posterior probabilities are
obtained from the softmax layer of the primary task. Each neuron in
the softmax layer points to a triphone state. Each of the 34 modeled
phones is associated with a set of designated triphone states. The
frame-level posterior for the phone is calculated by summing up all
the associated state posteriors.

The strong recognizer refers to a lattice-based phone posterior
estimator of the primary task. Both the AM and the syllable bi-gram
LM are applied such that the decoding output has a higher certainty
of predicted phones than the weak recognizer. The frame-level pos-
teriors are derived by applying the Forward-Backward algorithm
on the lattice (using the “lattice-to-post” function in Kaldi). The
acoustic and language model scaling factors are set as 0.1 and 1.0
respectively.
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(a) Posteriorgrams from an unimpaired speech segment.
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(b) Posteriorgrams from a mildly impaired speech segment.
weak recognizer

frames

50 100 150 200 250 300

p
h
o
n
e
s

10

20

30

strong recognizer

frames

50 100 150 200 250 300

p
h
o
n
e
s

10

20

30

/sil/

/h/ /N/
/m/

/h/
/k/

/N/

/œ/

/N/
/a:/

/n/
/m/

/k/ /k/

/O:/ /sil/ /u/

/n/
/N/

/E:/
/œ/

(c) Posteriorgrams from a severely impaired speech segment.

Fig. 2: Weak-strong phone posteriorgram pairs from unimpaired,
mildly impaired and severely impaired speech segments.
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3.2. Patterns in Posteriorgrams

Fig. 2 shows a few examples of weak-strong posteriorgram pairs that
represent unimpaired and impaired speech. The posteriorgram pair
in Fig. 2(a) is obtained from an unimpaired speech segment. For
Fig. 2(b) and 2(c), the speech segments are from a mildly impaired
speaker (AQ: 97.2) and a severely impaired speaker (AQ: 42.0), re-
spectively. All speech segments have the same duration of 3 seconds.
In the severely impaired case, there is a significant mismatch be-
tween the two posteriorgrams, which is related to a gibberish word.
Whilst for unimpaired speech, posteriorgrams from the weak and the
strong recognizers are highly similar. In general, the weak-strong
posteriorgrams of PWA speech show the following characteristics:

• ASR confidence: inconsistency of posterior distribution pat-
terns between the two recognizers; the strong recognizer is
confused about predicted phones, i.e., multiple phones acti-
vated at the same time frame;

• Voice abnormality: significant perturbation of phone posteri-
ors [19] (level of darkness) given by the weak recognizer;

• Speaking rate: long duration of silence and only a few phones
activated;

The above impairment characteristics are more significant in the
severely impaired case than in the mild one. This suggests that the
weak-strong posteriorgram pairs could be used as input features for
detecting and quantifying impairment in PWA speech.

4. EXPERIMENTAL SETUP

4.1. Posteriorgram Features and Feature Labels

The effectiveness of the posteriorgram features is evaluated in a bi-
nary classification task. It aims at discriminating PWA with High-
AQ (AQ ≥ 90) from those with Low-AQ (AQ < 90). The cut-
off value of 90 is set to reach balanced number of subjects in two
groups. There are 35 subjects in the High-AQ group (label 1) and
47 subjects in the Low-AQ group (label 0). Pairs of posteriorgram
features (300× 34) are extracted from speech segments of 3 second
long. The classification label of each segment is inherited from the
impaired speaker. Therefore, the more segments are classified as la-
bel 1, the more likely the speaker is in the High-AQ group. There
are 4, 984 segments from High-AQ speakers with label 1 and 9, 034
segments from Low-AQ ones with label 0.

The binary classification is carried out by the 5-fold cross valida-
tion strategy. In each fold, 80% of the subjects are used for training
and the rest 20% subjects are for test. 10% subjects are randomly
selected from training subjects as the validation data.

4.2. CNN-based Classifiers

4.2.1. Siamese and 2-channel CNN models

Siamese: The model structure is motivated by the model in
[24], as shown in Fig. 3 (left). From the bottom, two CNNs share
the identical structure and weights. They are regarded as descriptor
computation modules to extract high-level representations from two
branches of “weak” and “strong” posteriorgrams. It is followed by
a similarity computation layer to capture the pattern mismatch be-
tween two posteriorgrams. The formula of the distance computation
is |C(W )−C(S)| (element-wise absolute difference), where C(W )
and C(S) are representation vectors of “weak” and “strong” poste-
riorgrams generated from CNNs. A fully-connected layer with the
size of 40 is on the top of the model, followed by a sigmoid function

to output a final score for the speech segment. The ReLU activation
and dropout regularization are applied between the similarity layer
and the fully-connected layer.

2-channel: As an extension of siamese model, the 2-channel
CNN model shown in Fig. 3 (right) has no explicit module of de-
scriptor [21]. The posteriorgrams from weak and strong recognizers
are treated as a 2-channel image that is directly fed into the CNN.
In this way, the information contained in two posteriorgrams is
jointly processed from the start of the network to predict the severity
degree. A 40-dimensional fully-connected layer is applied. The
output scores for speech segments are also generated by the sigmoid
function.
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Fig. 3: Architectures of siamese (left) and 2-channel (right) models.

4.2.2. CNN structure variations

In this study, we experiment with two variants of the CNN structures
and apply them to siamese and 2-channel models respectively.

Structure 1 (s1): Each row of the posteriorgram (300 × 34)
indicates a frame-level phone posterior. Considering this physical
meaning, the structure in [25] for sentence classification is adopted,
in which each row of the input matrix denotes a word vector. 5 filter
sizes of {3, 4, 5, 6, 7} × 34 with stride 1 are applied to the convolu-
tional layer. 20 filters are used per filter size, resulting in 100 feature
maps (300 × 1). It is followed by global average pooling on each
feature map and the results are concatenated to a 100-dimensional
vector representation. For the siamese-s1 model, a pair of 100-
dimensional vectors denotes C(W ) and C(S) derived from two pos-
teriorgrams for the similarity computation. For the 2-channel-s1
model, the 100-dimensional vector is fed to the fully-connected net-
work and further fed to the output layer with dropout regularization.

Structure 2 (s2): This structure is a slight variant of the AlexNet
[26]. We revise the first convolution layer to have a kernel size of
11× 7 with and a stride of 6× 1. Batch normalization, ReLU acti-
vation and maxpooling are applied after each convolution layer. For
the siamese-s2 model, a fully-connected layer (3982-dimensional) is
applied after the 5 convolutional layers, leading to vector represen-
tations of C(W ) and C(S). For the 2-channel-s2 model, the sizes
of two fully-connected layers are set as 3982 and 40 respectively.
Batch normalization and ReLU activation are added after each fully-
connected layer. Other settings are consistent with the AlexNet.

4.2.3. Hyperparameters for model training

The training parameters are set empirically. The mini-batch sizes are
64 for training four classifiers: siamese-s1, siamese-s2, 2-channel-
s1, and 2-channel-s2. The initial learning rates are set to 1e-3 for
siamese models and set to 1e-4 for 2-channel models. Model train-
ing aims at minimizing the binary cross-entropy loss with the Adam
optimizer (weight decay coefficient 5e-4) [27]. Dropout method
with probability 0.5 is used for the regularization purpose. All mod-
els are implemented using Pytorch [28].
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Table 1: Classification performances of four classifiers using fusion methods by hard decision, averaging and SVM.

Model Fusion by hard decision Fusion by averaging Fusion by SVM
Accuracy F1 Specificity/Recall Accuracy F1 Specificity/Recall Accuracy F1 Specificity/Recall

Siamese-s1 0.817 0.852 0.915/0.686 0.817 0.854 0.936/0.657 0.829 0.860 0.915/0.714
Siamese-s2 0.854 0.870 0.851/0.857 0.842 0.857 0.830/0.857 0.866 0.884 0.894/0.829

2-channel-s1 0.817 0.845 0.872/0.743 0.829 0.854 0.872/0.771 0.842 0.857 0.830/0.857
2-channel-s2 0.854 0.870 0.851/0.857 0.878 0.891 0.872/0.886 0.878 0.891 0.872/0.886

5. RESULTS AND DISCUSSION

5.1. Segment-level Classification Accuracy

For the binary classification on test segments from high-AQ and
low-AQ subjects, the Area Under receiver operating characteristic
Curve (AUC) [29] is used as the performance metric. An AUC value
0.5 means random guess and 1.0 represents perfect classification
[30].

Table 2: AUC of test data in each fold based on four CNN classifiers.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Siamese-s1 0.73 0.82 0.70 0.78 0.76
Siamese-s2 0.71 0.81 0.70 0.80 0.78

2-channel-s1 0.72 0.83 0.71 0.82 0.81
2-channel-s2 0.74 0.83 0.73 0.83 0.81
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Fig. 4: A speech segment with score 0.15 from 2-channel-s2 model.

Table 2 shows the AUC results of 5-fold cross-validation experi-
ments with different classifier structures. The 2-channel models gen-
erally perform better than the siamese models. The 2-channel mod-
els allow joint learning of the knowledge from both patches at the
first layer [21]. The siamese models put more focus on contrasting
the mismatched patterns between weak and strong posteriorgrams,
while the 2-channel models are able to learn more comprehensive
features, including the mismatched patterns, speaking rate and voice
abnormality. For the 2-channel models, the structure s2 performs
slightly better than s1. As an example, with the 2-channel-s2 model,
a speech segment from an aphasia speaker (AQ: 73.8) is given a pre-
dicted score of 0.15. As shown in Fig. 4, the mismatched patterns
as well as the low speaking rate lead to the low predicted score. This
demonstrates that the CNN is able to learn impairment-related fea-
tures in posteriorgrams for PWA speech assessment.

5.2. Speaker-level Classification Accuracy

A post-processing method is required to combine all segment-level
scores for a test speaker and give a speaker-level classification deci-
sion. The following score fusion methods are considered:

1. Fusion by hard decision: The segment-level scores are quan-
tized to the value of 1 (High-AQ) or 0 (Low-AQ) using the threshold
of 0.5. If more than 50% of the test segments are with value 1, the
speaker is classified as High-AQ, otherwise the speaker is classified
as Low-AQ.

2. Fusion by averaging: A speaker-level score is computed by
taking the average of segment-level scores. If the speaker-level score
is higher than 0.5, the speaker is classified as High-AQ, otherwise
he/she is classified as Low-AQ.

3. Fusion by SVM: A 7-dimensional vector of statistical pa-
rameters is derived from segment-level scores to represent a speaker.
The parameters are: mean, maximum, minimum, standard deviation,
1/4 quantile, 3/4 quantile and skewness. A support vector machine
(SVM) with polynomial kernel is used to classify the feature vectors.
Leave-one-out cross-validation method is adopted.

Table 1 shows the speaker-level binary classification results with
different fusion methods. The classification performance is mea-
sured in terms of the Accuracy, F1 score, Specificity and Recall.
Overall speaking, the 2-channel-s2 model shows the best perfor-
mance among all models. This is consistent with the AUC results
as shown in Table 2. Segment-level scores from the 2-channel-s2
model tend to be more polarized, meaning this model is more cer-
tain about target classes. Nevertheless, the 2-channel-s2 model does
not benefit from the SVM fusion method for speaker-level classifi-
cation, whilst the SVM method shows high effectiveness with other
models. It is also observed that the CNN structure s2 outperforms
the s1 in both siamese and 2-channel models in the speaker-level
classification. This suggests that the structure s2 with smaller filter
sizes for learning more localized features to assessment is preferred.

In [10], a 5-dimensional feature vector of supra-segmental du-
ration and a 7-dimensional vector of combined features (two sylla-
ble embeddings and five duration parameters) were evaluated on the
same task of binary classification between High-AQ and Low-AQ
subjects. All of the features were obtained from the output of an ASR
system, which used a deep neural network based AM and the same
LM as the strong recognizer in this study. The F1 scores attained
with a random forest classifier were 0.821 for duration features and
0.903 for combined duration and text features. The proposed poste-
riorgram features perform much better than duration features (0.891
vs. 0.821). This is expected as a posteriorgram contains not only
duration information but also paraphasia characteristics. For the
combined features, syllable embeddings derived from ASR output,
though erroneous, are able to explicitly capture the semantic infor-
mation of input speech. Such information is not available in the pos-
teriorgram features. It is expected that joint use of these two types of
features would lead to further improvement of system performance.

6. CONCLUSIONS

This paper presents a novel approach to automatic assessment of
narrative speech from PWA, based on contrasting pairs of phone pos-
teriorgrams from strong and weak recognizers. Impairment-related
characteristics in posteriorgrams, namely paraphasias, change of
speaking rate, and voice abnormality, are learnt with CNN classi-
fication models. For binary classification between mild and severe
aphasia, a F1 score of 0.891 could be attained. The 2-channel CNN
structure with small filter sizes for learning comprehensive and
localized features is found to be most suitable in this application.
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