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ABSTRACT

The challenge of dysphonia voice studies is always the small
dataset. It is difficult to apply more sophisticated deep learn-
ing techniques without overfitting or underfitting. Convo-
lutional neural network (CNN) is a powerful classifier that
requires a large amount of training data. Data augmenta-
tion techniques for voice are limited. Fourier-based syn-
chrosqueezing transform (FSST) can be used as a data aug-
mentation technique to increase the data size. The results
indicated that not only can FSST increase the data size, the
CNN can also learn better with FSST than with Short-Time
Fourier Transform (STFT) power spectrum. The loss func-
tion for FSST converges, but not for STFT. FSST is also more
stable and provides more accurate results.

Index Terms— Data augmentation, signal decomposi-
tion, pathological voice, FSST, reassignment method, CNN,
regularization, overfitting

1. INTRODUCTION

Dysphonia is the disorder of voice which can make the voice
hoarse, breathy and weak. A lot of signal processing tech-
niques have been applied to discriminate dysphonia voice
from healthy voice. In recent years, CNN can be found in
pathological voice classification studies.

CNN was originally designed for image recognition [1]
and is still mainly used in image and object detection. Voice
is one-dimensional (1D) data and has to be transformed into
two-dimensions (2D) before being input into CNN. The cur-
rent standard practice is to use a spectrogram of the voice
signal as the 2D representation. There are other well-known
2D representations, such as Wigner-Ville distribution (WVD),
Cohen’s class, and wavelet transform. All of these represen-
tations produce a trade-off between joint time and frequency
(TF) resolution and cross-term reduction. It is a challenge to
obtain a clear TF representation of the signal. Restricted by
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Heisenberg’s uncertainty principle, the balance between fre-
quency resolution and time localization is required to obtain
a better result.

Compared to statistical models, neural networks require a
relatively larger amount of training data due to model com-
plexity. In pathological voice studies, datasets are generally
small and clinical datasets typically have less than 100 sam-
ples. Pathological voice analysis can benefit from data aug-
mentation. However, augmentation techniques used in image
processing are not always appropriate for voice and have to
be taken with care. Scaling techniques applied to the spectro-
gram of an unstable voice will potentially make it stable.

In this paper, an adaptive technique is used to decom-
pose a signal into its components using a Fourier-based sy-
chrosqueezing transform (FSST) as a mean for data augmen-
tation and transformation. The resulting 2D TF representation
becomes the input to CNN.

This paper is organized into the following sections. Sec-
tion 2 summarizes prior CNN classifications on pathological
voice studies and applied techniques. Section 3 describes the
dataset and method used in this study. Section 4 details the
implementation of the method. Section 5 presents the results,
followed by conclusions.

2. LITERATURE REVIEW ON PRIOR WORK

CNN has been used in various object detection tasks, espe-
cially in image recognition. It is also becoming a popular
technique for pathological voice classification. The problem
about pathological voice, including dysphonia, is the small
dataset. Transfer learning with a pre-trained network de-
signed for a similar purpose will be the best option. With the
lack of pre-trained pathological voice networks, researchers
are looking into the suitability of using pre-trained image
networks as in [2]. Alhussein and Muhammad retrained the
VGG16 and CaffeNet for images to detect pathology voice
recordings from the Saarbruecken Voice Database (SVD).

Arias-Vergara et al. used CNN for Parksinon’s disease
(PD) speech monitoring through mobile devices with 68 peo-
ple with Parksinson’s disease (PWP) and 50 control training
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subjects, and 17 PWP and 7 control test subjects [3]. Short-
time Fourier Transform (STFT) was used as the 2D transfor-
mation. Frid et al. fed raw voice signals directly into a CNN
for Parkinson’s speech diagnosis with 43 PWP and 9 control
subjects reading ”Rainbow passage” [4]. Peker et al. applied
a complex-valued artificial neural network with one hidden
layer on features extracted from PD phonation [5].

With a better understanding of how CNN learns, Wu et
al. built a deep learning network with pre-trained weight
from Convolutional Deep Belief Networks (CDBN) to clas-
sify pathological voices from the SVD. The voice recordings
were transformed into spectrograms as input to the CNN. The
network incorporated random dropout and L2 regularization.
However, the CDBN weight initialization did not improve the
accuracy of the CNN.

3. DATASET AND METHOD

Fig. 1 illustrates the conducted augmentation process. The
process included converting voice signals into TF representa-
tion, performing global normalization on each type of record-
ings, and determining the region of interest to reduce matrix
size with data augmentation before feeding to the CNN.

Fig. 1. Methodology block diagram.

3.1. Dataset

This study used the dysphonic and healthy recordings from
the Saarbruecken Voice Database (SVD). Both groups contain
recordings of mixed gender subjects age 25 and above. There
are 255 control subjects and 94 dysphonic subjects. Down-
sampling technique was used to balance the group size. The
control subjects were randomly sampled to obtain 94 subjects
for each type of recordings. Since there are only 349 subjects
in total, global normalization was performed on each record-
ing type before being fed into the CNN.

Recording types include short vowels of /a/, /i/ and /u/
voiced at 4 intonations each, high ( h), normal ( n), low ( l),
and low-high-low ( lhl). Each recording is about 0.5−1.0 s
long, sampled at 50 kHz. Applying STFT on a 0.5 s recording
with a 20 msec window and 50% overlapping will produce a
small matrix of 50x513. After subject balancing, each set of
voice has only 188 samples for training and testing.

3.2. Fourier-based Synchrosqueezing Transform

Synchrosqueezing transform (SST) is a type of Reassignment
Method (RM) [6] that works on modified STFT. RM has been
used to sharpen spectrograms by relocating elements to the

nearby ridge, also known as the center of gravity of the en-
ergy distribution. This relocation process created sparse and
sharpened TF representations (see Fig. 2), but increased the
matrix size from 50x513 to length of voicex513. This al-
lows separation of all stages of the voicing period and data
augmentation. Ten equal distanced samples were extracted
from each FSST power spectrum to augment data by 10 times.

Fig. 2. STFT power spectrum on the left is not as clear as the
corresponding FSST on the right.

SST, created by Daubechies and Mae for speaker iden-
tification [7], was originally based on Continuous Wavelet
Transform (CWT). Fourier-based synchrosqueezing trans-
form (FSST) [8, 9, 10, 11, 12, 13] evolved from CWT-based
synchrosqueezing [14], is a phase-based technique that al-
lows signal reconstruction and mode separation. Instead of
concentrating energy distribution along both time and fre-
quency axes as in RM, FSST operates on the modified STFT
and only operates on the frequency axis.

3.2.1. FSST Model Assumptions

FSST defines signal f(t) as a multi-component signal consist-

ing of K oscillatory components, f(t) =
K∑
k=1

Ak(t)e2πφk(t),

where Ak is the instantaneous amplitude and φ′k (derivative
of the phase) is the instantaneous frequency of component k.

The components have weak frequency modulation. In
other words, there exists a small ε � 1, ‖ A′k ‖ ≤ ε ‖ φ′k ‖
and ‖ φ′′k ‖ ≤ ε ‖ φ′k ‖. This requires the amplitude to be
differentiable and the phase twice differentiable.

The adjacent components are well-separated in frequency
with a distance d, φ′k − φ′k−1 > d. For a Gaussian window
of size σ, it’s frequency bandwidth ∆ =

√
2log(2)/σ. The

minimum distance between adjacent components is d = 2∆.

3.2.2. FSST Method

FSST is based on modified STFT, Vgf(t, η), to reduce smear-
ing. The additional linear phase shift, ej2πηt, makes equation
(1) a modified STFT.

Vgf(t, η) =

∫
f(τ)g ∗ (τ − t)e−j2πη(τ−t)dτ (1)
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Phase Transform: When |Vgf(t, η)| > 0, the instanta-
neous frequency (IF) can be approximated by ω̃f (t, η),

ω̃f (t, η) =
∂
∂tVgf(t, η)

j2πVgf(t, η)
(2)

Synchrosqueezing operator: Squeezes the content
Vgf(t, η) to the IF curves to form the operator Tgf(f, η),

Tgf(t, ω) =
1

2πg(0)

∫
R

Vgf(t, η)δ(ω − ω̃(t, η))dη (3)

A mode can be reconstructed by integrating the syn-
chrosqueezing operator within the vicinity of its IF ridge.

3.3. Dysphonia Spectrogram Representation

In dysphonia studies, the acoustic characteristics of voice play
an important role. Some of these characteristics are visible
from the spectrogram of sustained vowel /a/ shown in Fig. 3.
Breathy, low resonance, and hoarse voices have the energy
less concentrated than the healthy voice. An unstable voice
fluctuates across frequency over time.

Fig. 3. Voice samples for sustained /a/ from left to right illus-
trating healthy, breathy, low resonance, unstable, and hoarse
voices. Waveform on top of the corresponding spectorgram.

3.4. Augmentation and Normalization of CNN

Normalization of voice can change the characteristic of voice
and should be taken with care since the power spectrum also
reflects the intensity of the voice. A dysphonic voice can have
reduced intensity. It is necessary to maintain a global relative
intensity. Global normalization was used in this study.

Augmentation is a great way of increasing the data size.
Unlike image objects that can be viewed from different an-
gles, voice’s TF representations are orthogonal in time and
frequency domains. Rotation does not apply to 2D representa-
tion. Data augmentation techniques like scaling, rotation, and
random cropping are not appropriate. A lot of the techniques
normally applied to images cannot be applied to a voice’s TF
representation since it can change the voice’s characteristics.

There are only a few papers that have studied the possible
data augmentation techniques for sound [15] and voice [16].
Jiao et al. applied adversarial training to create the synthetic
pathological voice. Salamon et al. used more standard image
augmentation techniques adjusted for environmental sound.
Augmentation techniques such as pitch shifting seem proven
to be beneficial on environmental sound.

4. IMPLEMENTATION

Signal transformation into 2D was performed in MATLAB
and the CNN was built in tensorflow with data pipelining in
tfrecords. The 94 subjects from each group were split into
10-fold for cross-validation.

The sampling frequency of the SVD recordings is 50 kHz.
Using a 1024-datapoint (21.2 msec) Gaussian window, the
voice signal was transformed and synchrosqueezed into a TF
representation matrix. The matrix has the time dimension as
the original signal, but consists of 513 frequency bins. Each
frequency bin is around 48 Hz. For a 0.5 s recording, the
resulting FSST matrix is 25000x513 that can be cropped. The
FSST also produced sparsity in the TF representation with
virtually no information left in the high-frequency bins.

A TF power spectrum matrix dimension of 50x50 for
FSST and 45x50 for STFT were used to train the CNN. Our
region of interest is at the lower frequency bins where the
energy is concentrated. Fig. 4 shows the box plot of the cu-
mulatve energy distribution. The first 50 bins with frequency
range 0-2.4 kHz cover 98% of the energy. Pouchoulin et al.
has also indicated that the lower frequency range up to 3 kHz
is more relevant for dysphonia discrimination [17].

Fig. 4. Cumulative energy distribution showing 98% of the
power is contained in the first 50 frequency bins, 0-2.4 kHz.

To reduce the number of training parameters, a simple
CNN was used in this study. Fig. 5 outlines the CNN’s layers.
The CNN has 2 convolutional layers, 2 pooling layers, a fully
connected (dense) layer, and an output (dense) layer. There is
a flatten layer connecting the convolution layer to the dense
layer. Random dropout with rate 0.5 was placed into and out
of the dense layer. Each convolutional layer has 8 kernels
with a small receptive field of 3x3. A small pooling size of
2x2 is used in both pooling layers. The fully connected layer
has 64 neurons and the output layer has 2.
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ReLU activation function was used across the network
and softmax at the output dense layer. This simple network
has over 62 thousand parameters to be trained. The CNN was
trained over 200 epochs using binary cross-entropy loss func-
tion and Adagrad optimizer for its speed with learning rate
0.01. The dense layers also use L2 regularization with penalty
rate of 0.001.

Fig. 5. CNN model with 2 convolutional layers, 2 pooling
layers, 2 dropout layer, and 2 dense layers.

5. RESULTS

The CNN was trained with three sets of TF representation,
STFT power spectrum, FSST power spectrum, and FSST aug-
mented with 10 samples from each recording (FSST+DA).

Figs. 6 shows the CNN results using 10-fold validation.
Both sub-figures show that the CNN was able to learn bet-
ter with FSST representation (> 70% accuracy for a h) than
STFT representation (52% accuracy). The predictive results
are more stable with FSST. It is also easier to tell when over-
fitting starts with FSST+DA. After 150 epochs for a h, the
performance for FSST+DA starts to drop. This is when the
CNN started to learn the training data too well which pro-
duced less satisfactory validation result.

The study used all dysphonia recordings available from
SVD. Fig. 6 illustrates that the loss functions for both the
FSST and FSST+DA converge, but vary depending on the
vowel. There is some clear indication of when the CNN
started to overfit. The loss function for the test set starts to
increase and the accuracy starts to decrease. The STFT power
spectrum power shows difficulty in learning. The data size is
simply too small for the CNN to learn.

The overall performance for all three cases is mediocre.
Both sensitivities and specificities are around 60%. STFT
provided a slightly higher specificity. FSST without data aug-
mentation scores better than with augmentation. However,

(a) Accuracy functions

(b) Loss functions

Fig. 6. Comparing accuracies and loss functions between
FSST with data augmentation, FSST sampled at the middle
of the recording, and STFT power spectrum.

these numbers are meaningless since STFT has the highest
loss function. The predicted outcomes for STFT are unstable.

6. CONCLUSIONS

Although the FSST alone performs better with FSST+DA,
the sharpened FSST representation is still a better alternative
than STFT for CNN. A dynamic stopping algorithm might
be needed to make the CNN for various vowels. The re-
sults might be improved if the CNN was first pre-trained on
a smaller handpicked dataset. Increasing the number of con-
volutional layers might also help with performance, but will
require a larger dataset to compensate overfitting. A larger
dataset can provide more meaningful and reliable results.
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