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ABSTRACT

Detecting early signs of neurodegeneration is vital for plan-
ning treatments for neurological diseases. Speech plays an
important role in this context because it has been shown to
be a promising early indicator of neurological decline, and
because it can be acquired remotely without the need for spe-
cialized hardware. Typically, symptoms are characterized by
clinicians using subjective and discrete scales. The poor res-
olution and subjectivity of these scales can make the earliest
speech changes hard to detect. In this paper, we propose an
algorithm for the objective assessment of vocal tremor, a phe-
nomenon associated with many neurological disorders. The
algorithm extracts and aggregates a feature set from the aver-
age spectra of the energy and fundamental frequency profiles
of a sustained phonation. We show that the resultant low-
dimensional feature set reliably classifies healthy controls and
patients with amyotrophic lateral sclerosis perceptually rated
for tremor by speech language pathologists.

Index Terms— Amyotrophic Lateral Sclerosis (ALS),
Speech, Tremor, Dysarthria

1. INTRODUCTION

Early detection of neurological disease onset is vital for
measuring the efficacy of drug interventions and slowing pro-
gression. However, early detection is difficult because the
current gold standard endpoints for most neurodegenerative
diseases are functional rating scales - questionnaires used
by clinicians to assess a patient's symptoms [1][2]. Though
these scales span a comprehensive set of disease-specific
symptoms, scores for individual questions are low-resolution
and subjective, rendering the earliest signs of neurological
decline hard to detect. Objective evaluation of speech is
gaining popularity as a means of detecting subtle changes in
neurological health [3][4][5][6][7]. Several current studies
that detail these changes do so in a clinical setting using high-

quality microphones [8] or specially-designed hardware and
software systems [6][9][10]. Though reliable, these meth-
ods are limited in that they still require patients to visit a
clinic to be assessed. To increase the sensitivity of early
detection paradigms, patients should be able to perform self-
administered evaluations remotely and frequently, without
the use of specialized hardware. There is some work that
proposes the use of mobile devices such as smartphones for
collecting clinically-relevant measures of speech and moni-
toring disease progression [11][12]. However, further work
is required to develop tools that reliably extract additional
clinically-relevant measures from speech.

Sustained phonation (i.e. prolonging an “ah” for as long
and as steadily as possible) is a common speech elicitation
task used to evaluate the health of the phonatory speech sub-
system. Increased variance in the fundamental frequency (F0)
and energy contours of sustained phonations have long been
considered interpretable measures of dysarthria [13]. There
are several methods for characterizing the variance in F0 and
energy in a sustained phonation. The most common fam-
ily of measures aims to quantify cycle-by-cycle deviations in
phonation energy and F0 due to incomplete closure of the vo-
cal folds. Measures in this family include jitter and shimmer
[14][15], as well as several more robust measures [16][17].
Though proven to be useful in differentiation of healthy sub-
jects from Parkinsons patients, these measures do not eval-
uate vocal tremor, a low-frequency modulation in phonation
common in neurological disease. Vocal tremor can manifest
in some neurological disorders due to a loss of motor con-
trol in the laryngeal muscles, resulting in unintended quasi-
sinusoidal modulations in energy and F0 [18] [19]. One of the
earliest attempts at objectively measuring vocal tremor can be
found as part of the Multi-Dimensional Voice Program [20],
followed by the work by Brückl et al. in [21][22]. This family
of metrics discard information about the distribution of tremor
frequencies and intensities in the pitch and energy contours.
This presents an issue because tremor frequency and intensity
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Fig. 1: An overview of the proposed tremor detection algorithm.

can drift in time. To model non-stationary tremors, Pantazis
et al. proposed a tremor analysis technique based on the de-
composition of sustained phonations into intrinsic mode func-
tions [23]. Each decomposed intrinsic mode function can be
analyzed for the presence of tremulous modulations, but no
metrics for quantifying the tremor are proposed in that work.
Furthermore, it is uncertain which intrinsic mode functions
contain the most information on vocal tremor, or how many
intrinsic mode functions should be analyzed to fully charac-
terize tremor.

We propose an algorithm that objectively quantifies vocal
tremor in sustained phonations. The proposed method esti-
mates fundamental frequency (F0) and energy contours from
a sustained phonation and extracts measures of intensity, en-
ergy, and entropy to quantify the presence of tremor in energy
and pitch. We evaluate this method on a longitudinal speech
dataset of 4,834 sustained phonations from 26 healthy English
speakers and 65 ALS patients at varying disease stages. We
demonstrate the utility of this method by constructing several
binary classifiers for separating recordings from healthy con-
trols, recordings from ALS patients rated negative for tremor,
and recordings from ALS patients rated positive for tremor
using only these proposed measures.

2. ALGORITHM OVERVIEW

Figure 1 provides a high-level overview of the proposed ap-
proach. Consider a sustained phonation pre-processed such
that silence in the recording and edges of the phonation are
removed. We estimate the F0, p(n), and energy, e(n), con-
tour along this phonation and decorrelate both contours via
inverse filtering with linear prediction coefficients. We posit
that tremor can be characterized by extracting statistics from
the average spectra of both contours in the spectral sub-band
between 3 Hz and 25 Hz. These bounds are informed by pre-
vious literature, both medical [18] and technical [20]. This
approach accurately detects the presence of tremor regardless
of its non-stationary behavior.

2.1. Pre-processing

Sustained phonations are first processed with a voice activity
detector (VAD) to remove all silence segments. We used the
VAD method described in [24].

2.2. F0 and Energy Contour Extraction

The VAD-processed signal is decomposed into 10ms analy-
sis windows with a 1ms window overlap. The first and last
5 percent of windows are discarded to avoid amplitude ramp-
ing at the beginning and end of the phonation. The signal
energy is calculated in each window to form the energy con-
tour of the phonation e(n). Since estimating F0 is a difficult
task for speech from clinical populations and the proposed
method relies heavily on the shape of the F0 contour, care is
taken to ensure that the F0 estimates used herein are reliable.
To that end, we extract F0 from each windowed segment of
phonation using a modified version of the Praat pitch detec-
tion algorithm [25]. The Praat algorithm is modified so that
the F0 search range is adjusted depending on the sex of the
speaker. This allows us to reduce the frequency search range,
which mitigates octave jumping and increases accuracy. The
F0 search ranges for males and females were [60-260] Hz and
[120-380] Hz respectively. This approach is used to estimate
the F0 in successive windows of phonation, forming the F0
contour, p(n).

2.3. Contour Whitening

Forward linear prediction coefficients are estimated by mini-
mizing the expected value of the error between a ground truth
sequence and a low-order approximation of the sequence con-
structed from a linear combination of past samples. Thus, to
estimate prediction coefficients ak for a pitch sequence p[n],
we minimize

E

(p[n]− q∑
k=1

akp[n− k]

)2
 , (1)
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TABLE I - Tremor Feature Definitions

Feature Name Mathematical Definition

Dominant Tremor Frequency argmaxX(fT )

Max Absolute Tremor
Intensity

maxX(fT )

Median Absolute Tremor
Intensity

median X(fT )

Mean Absolute Tremor
Intensity

mean X(fT )

Max Relative Tremor
Intensity

maxX(fT )-median X(f)

Median Relative Tremor
Intensity

median X(fT )-median X(f)

Mean Relative Tremor
Intensity

mean X(fT )-median X(f)

Tremor Energy ‖X(fT )‖2

Tremor Entropy −
∑

X(fT ) log2 X(fT )

with respect to ak, where q is the number of prediction coeffi-
cients. To obtain the residual contour pr(n), we inverse filter
p(n) with its prediction coefficients

pr[n] = p[n]−
q∑

k=1

akp[n− k]. (2)

The inverse filtering detrends each contour, which is
speaker-specific; thus, pr[n] is spectrally-flattened, making
it easier to detect the low-frequency tremor-like variations in
the signal. The whitening process is repeated for the energy
contour to obtain er[n], the spectrally-flattened version of the
energy contour.

2.4. Spectrum Averaging and Feature Extraction

The signals er[n] and pr[n] are independently decomposed
into 1-second windows with an overlap of 100ms. We take the
FFT in each window and average across windows to obtain
the long-term average spectra Er(f) and Pr(f) respectively.
These average spectra contain information regarding the aver-
age intensity and modulation frequencies of er[n] and pr[n].
Lastly, we standardize the spectra by z-scoring the values of
their spectral bins. To characterize the presence of tremor
in the contours, we propose several metrics that capture the
prominence of low-frequency variations in the long-term av-
erage spectra. Informed by seminal work done on tremor in
neurodegenerative disease [18], we restrict the calculation of
these metrics to the band range between fT ∈ [3Hz . . . 25Hz].
These metrics are defined in Table I.

Fig. 2: Feature distributions of clinical and extrapolated tremor rat-
ings. Grey = Clinical, Blue = Extrapolated.

2.5. Dimensionality Reduction

The 9 features detailed in Table I are extracted for Er(f) and
Pr(f). The metrics extracted from the same spectra tend to
be highly correlated. Thus, we can reduce the dimensionality
of the feature set by collapsing the features into a single fea-
ture vector using principal component analysis (PCA). This
is done across all sustained phonations in the dataset by first
standardizing each feature vector by converting to z-scores
then performing PCA. The first PCA dimension is retained
as the combination feature vector. The above process is per-
formed for the 9 features on Er(f) and Pr(f), resulting in
two combination features capturing tremor-like characteris-
tics in energy and pitch respectively.

3. EXPERIMENTAL EVALUATION

We evaluate the proposed method on a dataset of sustained
phonations recorded by healthy English speakers and ALS
patients. The recordings were gathered as part of the ALS
at-home study where patients used a speech elicitation tool
in a smartphone application [11]. All speech samples were
collected with a sampling frequency of 16kHz and 16-bit res-
olution. Patients were asked to produce sustained phonations
of the vowel /a/ once a day (along with other stimuli) for the
duration of their participation in the study. The dataset in-
cludes 1,650 phonations from 26 healthy patients and 5,017
phonations from 65 ALS patients. Phonations were recorded
several times each week over the course of several months.
Seven phonations from each ALS patient were assessed for
tremor by a speech language pathologist (SLP). Rated phona-
tions were chosen from the beginning, middle, and end of
each patient’s study participation, so that they are representa-
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TABLE II - Performance Metrics for Binary Classification of
Tremor Diagnosis Groups

Classes Sex Sample
Size

Class.
Accuracy

ROC
Area FPR

Healthy v.
-Tremor

M 2240 58.17 0.580 0.498

Healthy v.
+Tremor

M 702 77.07 0.869 0.229

-Tremor v.
+Tremor

M 1918 74.14 0.850 0.263

Healthy v.
-Tremor

F 2238 57.95 0.601 0.407

Healthy v.
+Tremor

F 1384 88.43 0.952 0.118

-Tremor v.
+Tremor

F 1326 83.18 0.924 0.172

tive of a patient’s phonatory ability throughout the study. To
increase the statistical power of our analysis, we extrapolate
additional tremor ratings using two assumptions. The first as-
sumption is that no ALS patients experienced a decrease in
symptom severity over the course of the study. This is rea-
sonable as ALS is a neurodegenerative disease with no ex-
pectation that symptoms improve over time. Because tremor
is a symptom of neurodegenerative disease, we also assumed
that positive ratings for tremor were likely to be followed by
subsequent positive ratings for the same participant. Thus, if
all seven of a subjects ratings were positive or negative for
tremor, we labeled all files for that subject as either positive
or negative. The revised set of scores include 423 phona-
tions labeled with tremor and 2,761 phonations labeled with-
out tremor. We confirm that the extrapolated scores represent
the SLP-rated scores by plotting histograms of feature values
for SLP-rated scores and extrapolated scores in Figure 2.

3.1. Classifying Clinical Ratings using Tremor Features

To demonstrate the utility of the proposed method, we use
a collection of binary classification tasks for discriminating
sustained phonations labeled by diagnosis group (e.g. healthy
control, ALS without tremor, ALS with tremor). Each clas-
sification task is run twice: once for each sex. This is be-
cause the normative distributions for the tremor scores are not
equivalent for males and females. Previous research has also
identified significant sex differences in the analysis of F0 and
energy contours [26]. We therefore construct six binary logis-
tic regression classifiers which are trained and validated using
10-fold stratified cross-validation. The classification tasks test
the discriminative power of the proposed features in classi-
fying all six combinations of two classes (across diagnosis
groups and sexes). Because the class sizes are unbalanced,
we oversample the minority class using the Synthetic Mi-
nority Over-Sampling Technique (SMOTE) proposed in [27].
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Fig. 3: Plots of tremor features by sex and diagnosis group. Blue =
Healthy, Black = -Tremor, Red = +Tremor.

The SMOTE procedure is only performed on the training set
to avoid information leakage between the test and training
sets. The results of the classification experiments are pre-
sented in Table II. Results of each classification task show
that the combination tremor measures possess noticeable dis-
criminative power for separating sustained phonations rated
perceptually for vocal tremor. This is true for both males
and females, though classification results are much better for
women. There is evidence that suggests that measures of de-
viation in phonatory control may be a better indicator of de-
cline in women compared to men [26]. For both sexes how-
ever, the algorithm is incapable of reliably discriminating be-
tween healthy controls and ALS patients with negative per-
ceptual ratings for vocal tremor, with predictive power just
above that of random guessing. This result is expected due to
the fact this method is only intended to measure the presence
of tremor. A visualization of tremor feature values for each
diagnosis group is shown in Figure 3.

4. CONCLUSION

Current objective measures of tremor do not fully charac-
terize the distribution of tremor frequencies and intensities
throughout a sustained phonation. In this paper, we propose
a comprehensive approach to characterizing tremor that ex-
tracts a variety of statistics from the average spectra of the
decorrelated F0 and energy contours of a sustained phonation.
We have shown that this approach possesses discriminative
power for identifying sustained phonations with perceptual
vocal tremor. In conjunction with other objective measures of
speech, the proposed measures may be useful in identifying
subtle changes in speech, supporting the early detection and
possible diagnosis of neurological disease.
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