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ABSTRACT

This paper proposes a novel pipeline for automatic grammar aug-
mentation that provides a significant improvement in the voice com-
mand recognition accuracy for systems with small footprint acoustic
model (AM). The improvement is achieved by augmenting the user-
defined voice command set, also called grammar set, with alternate
grammar expressions. For a given grammar set, a set of potential
grammar expressions (candidate set) for augmentation is constructed
from an AM-specific statistical pronunciation dictionary that cap-
tures the consistent patterns and errors in the decoding of AM in-
duced by variations in pronunciation, pitch, tempo, accent, ambigu-
ous spellings, and noise conditions. Using this candidate set, greedy
optimization based and cross-entropy-method (CEM) based algo-
rithms are considered to search for an augmented grammar set with
improved recognition accuracy utilizing a command-specific dataset.
Our experiments show that the proposed pipeline along with algo-
rithms considered in this paper significantly reduce the mis-detection
and mis-classification rate without increasing the false-alarm rate.
Experiments also demonstrate the consistent superior performance
of CEM method over greedy-based algorithms.

Index Terms— voice command recognition, CTC, grammar
augmentation, cross entropy method, statistical pronunciation dic-
tionary

1. INTRODUCTION

Voice UI is becoming ubiquitous for all types of devices, from smart-
phones to automobiles. Although we have seen substantial improve-
ment in speech recognition accuracy reported in the literature since
the advent of deep neural network based solutions [1, 2, 3, 4], design-
ing robust voice UI system for low memory/power footprint embed-
ded devices without a cloud-based back-end still remains a challeng-
ing problem. Compared to its cloud-based counterpart, on-device in-
ference, despite being limited by computation power, memory size,
and power consumption, remains appealing for several reasons: (i)
there are less privacy concerns as user voice data need not be up-
loaded to the cloud; (ii) it reduces the latency as it does not involve
network access delay; (iii) its usage is not restricted by internet avail-
ability, and can be applied in devices with no built-in communication
module.

In this work, we focus on improving the recognition accuracy of
on-device voice UI systems designed to respond to a limited set of
pre-defined voice commands. Such voice UI systems are commonly
used in modern IoT/embedded devices such as bluetooth speaker,
portable camcorder, hearables, home appliances, etc. Specially, we
assume a fixed audio front-end and only look at the pipeline of map-
ping acoustic features to voice commands.

As illustrated in Fig. 1, we focus on the voice command recog-
nition system composed of an acoustic model (AM) encoder that

Fig. 1. Voice command recognition pipeline

converts the acoustic features into phoneme/grapheme-based proba-
bilistic output, followed by a decoder (e.g., FST) that maps the prob-
abilistic output from AM to one of the voice commands. State of the
art acoustic model utilizes either CTC [5], RNN-transducer [4], or
Attention Model [6] (see [7, 8] for a good summary). They gener-
ate probabilistic outputs, which are fed to a decoder that generates
the posterior probability of the corresponding phoneme or grapheme
label. Even though these model architectures and training method-
ologies lead to satisfactory and even super-human transcription ac-
curacy, the best models obtained are often too large for their de-
ployment in small portable devices, e.g., even the smallest model
considered in [9] (Table 11 therein) has 18M parameters.

In this work, we utilize a 211K parameter unidirectional-
RNN-based acoustic model trained with CTC criterion using Lib-
rispeech [10] and a few other datasets, which output probabilities
on grapheme targets. Due to the small model size, its transcription
accuracy is low: the greedy decoding word-error-rate (WER) with-
out any language model is 48.6% on Libri-speech test-clean dataset.
Hence, one of the challenges addressed by our work is, given a
small acoustic model trained with general speech dataset, how can
one improve the command recognition accuracy utilizing limited
command-specific data. Such small footprint AMs have been con-
sidered for keyword detection in [11] and [12]. Our work extends
these by improving the command command recognition accuracy
with a small footprint AM.

In Table 1, we list a few samples of the greedy decoding results
from the 211K parameter acoustic model. It is worth noting that even
though the word-error-rate is high, the error that it makes tends to be
a phonetically plausible rendering of the correct word [1]. Running
through a large dataset, we also observe that the error patterns tend
to be consistent across different utterances. This leads to a useful in-
sight: for the recognition of a limited set of voice commands (a.k.a.
grammar of the decoder), one could improve recognition accuracy

AM greedy decoding Ground truth
the recter pawsd and den the rector paused and then
shaking his classto hands shaking his clasped hands
before him went on before him went on
tax for wone o thease facts form one of these
and itees he other and ideas the other

Table 1. Greedy decoding samples from the acoustic encoder. Word
errors are labeled in bold.
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by adding variations that capture common and consistent errors from
the acoustic model to original command set. We define grammar as a
set of valid voice commands (e.g., the grammar can be {play music,
stop music, . . .}) and we refer to this technique of adding variations
to the original grammar as grammar augmentation. Effective gram-
mar augmentation is the focus of this work.

The main contribution of this paper is the design of effective
grammar augmentation framework which provides significant im-
provement over the baseline system. Next, we highlight our main
contributions in detail: (a) For any given set of original voice com-
mands, we propose the design of a candidate set of all grammar
variations which captures the consistent errors for a given AM (b)
We propose a technique for fast evaluation of command recognition
accuracy along with false-alarm and mis-detection rate for any aug-
mented grammar set and finally (c) We devise various algorithms to
automatically identify an improved augmented grammar set by suit-
ably adding variations from the candidate set to the original gram-
mar.

Our novel pipeline using the above techniques is illustrated in
Fig. 2. The rest of the paper is organized as the following: In Sec-
tion 2, we give an overview of the proposed grammar augmenta-
tion pipeline and dive into the generation of a candidate set and fast
grammar evaluation techniques. In Section 3 algorithms via greedy
optimization and CEM algorithm are utilized to automate the gram-
mar augmentation process. The experiment results are presented in
Section 4 and we discussion on future directions in Section 5.

2. PIPELINE FOR AUTOMATIC GRAMMAR
AUGMENTATION

Our AM is trained with CTC loss [5], and can thus assign a posterior
probability PCTC(g|u) for each command g in a command set, for an
input utterance u. For a given test utterance, our system picks the
command with the highest probability, or rejects the utterance if the
highest probability is below a pre-defined confidence threshold (see
Section 2.3) [13][14].

Command decoding errors happen if the AM output deviates
from the ground truth to the extent that it can no longer success-
fully discriminate against other grammar sequences. The idea be-
hind grammar augmentation is to restore the discriminative power of
the acoustic model by including in the grammar the sequence vari-
ations that capture pronunciation variations or consistent AM error
patterns. To do that, we begin with generation of a candidate set
containing meaningful variations.

2.1. AM-specific statistical pronunciation dictionary
The augmentation candidates should ideally capture consistent error
patterns from the AM, induced by variations in pronunciation, pitch,
tempo, accent, ambiguous spellings, or even inherent mistakes made
by the AM. For example, if any command includes words that have
homophones, then it is necessary to consider adding those homo-
phones into the grammar. To capture these word-level variations,
we introduce a novel concept named AM-specific statistical pronun-
ciation dictionary, obtained by the following steps: First, we run
the AM through a large general speech dataset (e.g., the training
set of AM). For each utterance, we obtain its greedy decoding se-
quence by outputting the character with the maximum probability
at each time frame, followed by the CTC squashing function [5] to
collapse repeated output graphemes and remove blanks. Given that
most utterances from a general speech dataset correspond to a sen-
tence rather than a single word, we use Levenshtein algorithm to find

the minimum-edit-path of the ground-truth to the decoding, and by
doing so obtain a mapping of each word to its corresponding max-
imum probability decoding. For each word, we gather the statistics
regarding the frequencies of its maximum-probability decoding out-
puts. Here we sample a few entries from the dictionary obtained
using our 211K-parameter AM:

set pause two
set 32.2% pause 15.7% to 53.3%
said 16.6% pose 14.9% two 34.7%
sat 11.4% pase 7.68% do 1.0%
sait 8.15% porse 7.31% tu 0.7%
sed 4.71% pas 7.31% too 0.3%

2.2. Candidate set for grammar augmentation

Utilizing this statistical dictionary, we build a candidate set contain-
ing potential grammar variations by repeatedly replacing each word
in the original grammar by its top-k likely max-decoding outputs.
Consider a voice UI application for a small bluetooth player, one
could have the following five commands forming the original gram-
mar.

command original candidate set for
(C) grammar1 grammar augmentation (G)

play music play music pla music, ply music, play mesic, . . .

stop music stop music stap music, stup music, stup mesic, . . .

pause music pause music pose music, pase mesic, pause mesic, . . .

previous song previous song previs song, previous son, . . .

next song next song nex song, lext song, nex son, . . .

By looking up in the statistical dictionary the words contained in
the original grammar, one can form an array of alternate expressions
for the original commands as shown above. For each command,
the set of candidates is the cartesian product of the top-k decoding
list from the statistical pronunciation dictionary for each word in the
command. The value of k can be different for different words, and
is chosen to capture at least a certain fraction of all the variations.

2.3. Evaluation of command recognition accuracy
Let us denote the set of commands as C, the set of all grammar candi-
dates G, and the mapping function from G to C as f . A grammarG is
a subset of G. For the purpose of evaluating the recognition accuracy
of any grammar, we need a command-specific dataset containing au-
dio waveforms and the corresponding target commands. We denote
such dataset as (u, t) ∈ D with u and t denoting an utterance and its
corresponding target command. To evaluate the false alarm rate, we
also need an out-of-domain dataset u ∈ Dood that contains a set of
utterances that do not correspond to any of the commands.

As mentioned before, the acoustic decoder compares the poste-
rior probabilities PCTC(g|u) of all the grammar candidates g included
in grammar set G ⊂ G given the audio waveform u, and output the
command f(g∗) where g∗ = argmaxg∈G PCTC(g|u). This calcu-
lation is done by running a forward-only dynamic programming al-
gorithm on the AM output. In order to avoid having to repeat the
calculation of the probability scores for every choice of grammar

1Here we assume that AM is trained with grapheme as target, and as a result the
grammar is exact the same as the command. Note that the same grammar augmentation
pipeline introduced here can be applied to AM trained with phoneme target as well, in
which case the grammar is a set of phoneme sequences, and the statistical pronunciation
dictionary contains variations of each word in phoneme representation.
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Fig. 2. Grammar augmentation pipeline.

set G ⊆ G, we pre-compute and store the probability scores for
all the candidate grammar, and all the utterances in both command-
specific dataset D and out-of-domain dataset Dood. Precisely, as a
pre-processing steps of the grammar augmentation search algorithm,
we obtain the following probability scores:

PCTC(g|u), ∀g ∈ G,∀u ∈ D ∪ Dood. (1)

To achieve a false alarm rate (FAR) target of α, the confidence
threshold for the probability score can be computed as below,

τ(G,α) = min
τ

{
τ :

∣∣{u ∈ Dood : max
g∈G

PCTC(g|u) > τ
}∣∣

|Dood|
< α

}
.

The decoded command for an utterance u is

d(G,α, u) =

{
φ, if maxg∈G PCTC(g|u) < τ(G,α),
argmax
c∈C

max
g∈G,f(g)=c

PCTC(g|u), otherwise,

where φ denotes decoding being out-of-domain.
With a fixed false-alarm rate, there are two types of error event:

mis-detection and mis-classification. Mis-detection refers to the case
where a voice command is issued but not detected (i.e., decoded
as being out-of-domain), whereas mis-classification happens where
a voice command is issued and detected, but the wrong command
is decoded. Precisely, the mis-detection-rate (MDR) and the mis-
classification-rate (MCR) are defined as below

MDR(G,α) =| {(u, t) ∈ D : d(G,α, u) = φ} |/|D|,
MCR(G,α) =| {(u, t) ∈ D : d(G,α, u) 6∈ {φ, t}} |/|D|.

3. AUGMENTATION SEARCH ALGORITHMS
The grammar augmentation algorithms we consider search for the
grammar setG among all subsets of a candidate set G that minimizes
a weighted sum of the mis-detection-rate and mis-classification-rate
with a fixed false-alarm target α,

min
G⊆G

MCR(G,α) + βMDR(G,α). (2)

Here the weight factor β controls the significance of mis-detection
versus mis-classification. Since we pre-compute the probabilities as
shown in Equation (1), for each grammar G ⊆ G the objective func-
tion can be evaluated without invoking the AM, which significantly
speeds up the search algorithms.

It is important to note that adding candidate to the grammar does
not always improve performance: (i) With a fixed false-alarm tar-
get, adding more candidates only increase the confidence threshold
τ(G,α), which could potentially result in degraded mis-detection
rate. (ii) distinguishability of the commands has a complex inter-
dependency, hence adding grammar candidate for one command
may reduce the recognition rate of other commands, as it may alter
the classification boundary amongst the set of commands.

3.1. Augmentation via greedy optimization methods
We consider the following three methods based on greedy optimiza-
tion:

Naive greedy search: Start with the original grammar, iteratively
go through all the candidates from G. In each iteration, add the
candidate that best improves the objective function and update the
confidence threshold to maintain target FAR, until no candidate can
improve further.

Greedy search with refinement: This algorithm is similar to
greedy search except for every time a candidate is added to the
grammar, we remove those candidates among the remaining ones
which contain the added candidate as a subsequence. For example,
for pause music command, if candidate pose music is added to the
grammar, then porse music is removed from subsequent iterations.
Trimming the candidate set in this manner increases the diversity of
variations in the grammar.

Beam-search: In each iteration a list of l best grammar sets is
maintained. This degenerates to the naive greedy algorithm when
l = 1.
3.2. Augmentation via cross entropy method (CEM)
Cross entropy method (CEM) is a widely used combinatorial opti-
mization algorithm and has been successfully applied in some rein-
forcement learning problems [15, 16]. The main idea is rooted from
rare event sampling, for which the algorithm tries to minimize the
KL divergence between a proposed sampling distribution and the
optimal zero-variance importance sampling distribution [16]. Go-
ing back to the grammar augmentation objective function in Equa-
tion (2), the search space is the power set of the candidate set G,
which can be represented by {0, 1}|G|, with each grammar choice
represented by a |G|-dimensional binary vector.

Applying the idea of CEM, we start with an initial probability
distribution on {0, 1}|G|, and iteratively tune its parameter so that it
assigns most of the probability mass in the region towards the min-
imization of the objection function. In our design, the distribution
on this discrete space is induced by the sign of a |G|-dimensional in-
dependent Gaussian distributions, parameterized by their mean and
variance in each dimension and initialized as stand Gaussian. For
each iteration, we start with a population of s samples from the cur-
rent distribution, each representing a feasible candidate choice. We
evaluate the objective function of MDR+βMCR for each of sample
candidate choice, and keep the best γ fraction. We then update the
parameter of the distribution using the sample mean and variance of
the top γs candidates (also called elite set), and iterate the procedure
by obtaining s samples from the updated distribution.

4. EXPERIMENTS

In this section, we present some experiments which illustrate the
improvement that can be obtained in recognition accuracy by ap-
plying our grammar augmentation algorithm. All the results are ob-
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tained with a dataset containing 5 commands: play music, pause mu-
sic, stop music, next song and previous song. This dataset contains
utterances with varying gender, pitch, volume, noise types and ac-
cents, and are split into training, validation, and testing datasets. The
training dataset is used to train the augmentation search algorithms
to minimize the objective defined in (2). The validation dataset is
used to compare performances of grammar sets obtained and decide
which one to take. Finally, we report the results of the final grammar
set on a test dataset. For the training objective function in Equa-
tion (2), we pick β = 1, in which case minimizing the sum of MDR
and MCR is equivalent to maximizing the command success rate
1−MCR(G,α)−MDR(G,α). A candidate set is obtained from run-
ning the 211K parameter AM with a 2000-hour dataset using steps
discussed in Section 2.1 and 2.2. We consider 150 grammar candi-
dates (|G| = 150) using our statistical pronunciation dictionary.

4.1. Performance Evaluation

We analyze the grammar augmentation algorithms described in Sec-
tion 3 with a fixed FAR target of α = 0.1% and compare the aug-
mented grammar output by each algorithm. Fig. 3 shows the com-
mand success rate and the decomposition of the error in terms of
mis-detection and mis-classification. Note that CEM algorithm pro-
vides most improvement in command success rate unlike greedy-
optimization based algorithms which may commit to sub-optimal
grammar sets early on. As discussed previously, adding more varia-
tions to the grammar set makes it more susceptible to mis-detection
errors. In fact, adding all 150 grammar expression reduces the com-
mand success rate to 80% and increases the MDR to 13.76%. How-
ever, Fig 3 shows that performing augmentation in a principled man-
ner can greatly reduce the mis-classification error without increasing
the mis-detection errors.
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Fig. 3. Performance of grammar augmentation algorithms.

4.2. Complexity of Grammar Augmentation Algorithms

We evaluate the complexity of the augmentation algorithms consid-
ered in Section 3. The most computationally expensive step in im-
plementing our augmentation algorithms is the evaluation of MCR
and MDR for any candidate grammar set. Hence, we measure the
complexity of our augmentation algorithms in terms of number of
grammar evaluations needed to output their best augmented gram-
mar set. Fig. 4 illustrates the variation/improvement in command
success rate (1-MDR-MCR) as the number of grammar evaluations
increases. Note that CEM takes only marginally more evaluations
while providing the maximum reduction in the sum of MCR and
MDR. While beamsearch explores more and requires more gram-
mar evaluation, it provides only marginally better improvement over

naive greedy. The greedy algorithm refinement reaches its best per-
formance in the least number of grammar evaluations. This suggests
that incentivizing diversity over exploration may provide better im-
provement in command success rate and in fewer evaluations.
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Fig. 4. Test dataset performance vs. number of grammar evaluations

4.3. Effect of Candidate Set Size on Performance

So far we considered a candidate set size of 150 (|G| = 150). Next,
we investigate the effect of varying the candidate set size on the per-
formance of the augmentation algorithms. We vary the candidate
size by varying the number of words k we choose from the top-k
likely max-decoding outputs for every word in the statistical pronun-
ciation dictionary. Hence, a larger candidate size captures a larger
probability of max-decoding outputs. We repeat our experiments by
altering the candidate set size from 25 to 150. Table 2 shows the
performance the augmentation algorithms for various candidate set
sizes. In particular, it shows that CEM improves as we increase the
candidate set and is consistently better than greedy based algorithms.

Candidate set Greedy Greedy Beamsearch CEM
size |G| (refinement) (width 5)

25 92.31 91.79 92.31 93.25
50 93.16 92.74 93.50 93.59
75 93.08 93.16 92.99 93.68
100 92.82 92.65 92.05 94.02
150 93.76 94.02 93.85 94.44

Table 2. 1-MDR - MCR (%) for different algorithms with different
candidate set size |G|.

5. CONCLUSION AND FUTURE WORK

In this work, we focus on a small-footprint voice command recogni-
tion system composed of a CTC-based small-capacity acoustic en-
coder, and a corresponding maximum a posteriori decoder for the
recognition of a limited set of fixed commands. With a command
specific dataset, we proposed a novel pipeline that automatically
augments the command grammar for improved mis-detection and
mis-classification rate. We achieved this by adapting the decoder to
the consistent decoding variations of the acoustic model. An impor-
tant direction of future work is to extend our grammar augmentation
pipeline to provide personalization, i.e., to improve the recognition
accuracy for a specific user by adapting the decoder to better fit both
the AM and the user’s pronunciation pattern.
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