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ABSTRACT

In this paper, we explore the use of adversarial examples
for improving a neural network based keyword spotting
(KWS) system. Specially, in our system, an effective and
small-footprint attention-based neural network model is used.
Adversarial example is defined as a misclassified example
by a model, but it is only slightly skewed from the original
correctly-classified one. In the KWS task, it is a natural idea
to regard the false alarmed or false rejected queries as some
kind of adversarial examples. In our work, given a well-
trained attention-based KWS model, we first generate adver-
sarial examples using the fast gradient sign method (FGSM)
and find that these examples can dramatically degrade the
KWS performance. Using these adversarial examples as aug-
mented data to retrain the KWS model, we finally achieve
45.6% relative and false reject rate (FRR) reduction at 1.0
false alarm rate (FAR) per hour on a collected dataset from a
smart speaker.

Index Terms— end-to-end, KWS, adversarial examples,
attention

1. INTRODUCTION

Smart devices usually listen to a large amount of audio data
generated by users and the surrounding environments. In or-
der to activate the speech interactions between devices and
users, a standby keyword spotting (KWS) or wake-up word
detection module, is particularly important to detect prede-
fined keyword(s) in audio stream to trigger voice interactions.
A good KWS system needs to maintain high robustness with
low false rejections and false alarms while being efficient, low
power consumption and small-footprint.

Various KWS approaches have been proposed, including
large vocabulary continuous speech recognition (LVCSR)
based lattice search approaches [1, 2, 3], hidden Markov
model (HMM) based keyword/filler approaches [4, 5, 6]
and query-by-example (QbyE) based template matching ap-
proaches [7, 8]. Recently, with the development of deep
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†Lei Xie is the corresponding author.

learning and its successful applications in speech recogni-
tion, deep neural networks (DNNs) have been introduced to
KWS [9, 10, 11, 12]. This approach is highly attractive to run
on device with small footprint and low latency, as the size of
the DNN can be easily controlled and no complicated graph-
search is involved. Recently, attention-based end-to-end
method has also been introduced to the KWS task [13] and
further performance improvement has been observed. Still
following the DNN framework, this approach significantly
simplifies the mode structure and the decoding procedure.

The performance of a KWS system is typically evaluated
by two criteria, FRR and FAR. Although many DNN models
achieve superior performance with decent level of low FRR
and FAR, the real-world application system can still be falsely
triggered when the queries are totally unrelated to the key-
word, or be falsely rejected when the queries are keyword
obviously. Worsely, the queries triggering false alarm (FA)
or false reject (FR) are non-reproducible because of the com-
plicated acoustic environments and many other unpredictable
reasons. Thus, this non-reproducible attribute makes it diffi-
cult to further improve the KWS performance. It is interest-
ing that such kind of false-alarmed or false-rejected queries
can be regarded as adversarial examples [14] in the machine
learning area.

The concept of adversarial example was first proposed
in [15] for computer vision tasks and further developed by
many followers, from adversarial example generation [16] to
adversarial example defense [17]. Simply speaking, an adver-
sarial example is a misclassified example by a model, but it
is only slightly skewed from the original correctly-classified
one. These examples can be generated by adding unnotice-
able perturbations to the original examples. Recently, audio
adversarial examples were also proposed [18], in which the
authors tried to generated audio examples that can easily mis-
lead a well-trained speech recognition system. More specif-
ically, given any audio waveform, they can produce another
that is over 99.9% similar, but transcribes as any phrase they
choose. These studies indicate that the outputs of neural net-
work models are not smooth with respect to inputs and there
are “blind spots” in the input space.

In this paper, we explore the use of adversarial examples
for improving an attention-based DNN KWS system. This
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Fig. 1. Attention end-to-end KWS model.

study is motivated by our recent work on robust speech recog-
nition [19], in which, instead of attacking speech recognition
systems, we use adversarial examples as a data augmentation
method for robust speech recognition during acoustic model
(AM) training. As mentioned earlier, introducing adversarial
examples into KWS is pretty natural because of the existence
of FA and FR queries. Our studies show that there exists such
kind of adversarial examples that can apparently trigger FR
and FA in a well-trained NN KWS system. Hence following
our idea in [20], we further explore the ways to enhance the
KWS model using adversarial examples. Finally, we achieve
45.6% relative FRR reduction at 1.0 FAR per hour on a col-
lected dataset from a smart speaker.

The rest of this paper is organized as follows. Section 2
briefly introduces the attention-based end-to-end KWS ap-
proach. Section 3 gives details about the generation of adver-
sarial examples. Section 4 shows our experiments and results
and Section 5 concludes this paper.

2. ATTENTION MODEL

In this paper, we adopt an recently-proposed attention-based
end-to-end KWS model [13], as shown in Figure 1. This
simple architecture consists of two modules, an encoder
and an attention model. The encoder is usually a recur-
rent neural network (RNN) which is used to extract rep-
resentations from the input features. The attention layer
transforms the representations into a fixed length vector. s
Formally, suppose the input feature sequence of the model
is xxx = (xxx1, · · · ,xxxt, · · · ,xxxT ), and the output sequence of
encoder is hhh = (hhh1, · · · ,hhht, · · · ,hhhT ), where T is the length
of the sequence. This encoder can be expressed as

hhh = Encoder(xxx) (1)

In our work, gated recurrent units (GRUs [21]) are adopted
as the encoder. Then the attention model generates a context
vector ccc:

ccc =

T∑
t=1

αthhhttt (2)

Specifically, we employ soft attention [22], which is described
by the following equations:

et = vvvT tanh(WWWhhht + bbb) (3)

αt =
exp(et)

T∑
t=1

exp(et)

(4)

Finally, we compute the confidence by a projection and a
softmax function:

p = softmax(UcUcUc) (5)

where UUU is linear transformation matrix, and p represents the
confidence of the keyword which needs to be detected.

3. ADVERSARIAL EXAMPLES

Adversarial examples can be generated by adding some well-
designed small perturbations to the original examples. We
call this kind of perturbations as adversarial perturbations.
How to generate adversarial perturbations attracts lots of in-
terests in computer vision and speech processing fields. In
this paper, we use a popular method, the fast gradient sign
method (FGSM) proposed by [16] in our KWS system. We
would like to verify if this method still works when the input
is a time series sequence.

Typically, a DNN with parameters θθθ can be represented
as a function f(xxx,θθθ) with input xxx. Given a well-trained net-
work and a pair of correctly-classified example (xxxi, yi), where
yi is the corresponding ground truth label, the corresponding
adversarial example xxxadvi can be defined as

xxxadvi = xxxi + δδδi (6)

so that
yi 6= f(xxxadvi , θθθ) (7)

where
‖δδδi‖ � ‖xxxi‖ (8)

The perturbations satisfying these conditions can interfere the
correctness of the original model. Here, FGSM is used to
find and generate these perturbations. The idea behind FGSM
is pretty straightforward. Given a pair of training example
(xxxi, yi) and the loss function L(yi, f(xxxi, θθθ))1, FGSM tries to
find a direction in input space which makes the loss function
increase efficiently. This direction can be obtained by deriv-
ing L(yi, f(xxxi, θθθ) with respect input xxxi. So, we have

δδδFGSM
i = ε sign(

∂L(yi, f(xxxi, θθθ))

∂xxxi
)

xxxadvi = xxxi + δδδFGSM
i

(9)

where ε is a small constant to adjust the amplitude of the per-
turbation. Sign function is used here to make it easy to satisfy
the constraint in equation 8. At this point, we are ready to
produce the adversarial examples for the experiments as de-
scribed below.

1Usually cross entropy loss function is used.
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(a). Positive adversarial example.

(b). Negative adversarial example.
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Fig. 2. Adversarial queries generation.
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(a). Positive adversarial example. (b). Negative adversarial example.

Fig. 3. Visualization of attention layer’s weights. The blue
line represents the adversarial example’s attention weights
with ε = 0.1 and the red line represents the original exam-
ple’s attention weights.

4. EXPERIMENTS

4.1. Corpus preparation

We used wake-up data collected from Mobvoi smart speaker
TicKasa Fox2 to verify our KWS approach. The wake-up
term is composed of three Mandarin syllables (“hai xiao wen”).
Our dataset covers 523 different speakers, including 303 chil-
dren and 220 adults. In addition, each speaker’s collection in-
cludes positive utterances (with wake-up word) and negative
utterances recorded with different speaker-to-microphone dis-
tance and different signal-to-noise (SNR) ratio where noises
are from typical home environments. In total, there are 20K
positive examples (∼10 hours) and 54K negative examples
(∼57 hours) used as the training data. The validation set
includes 2.3K positive examples (∼1.1h) and 5.5K negative
examples (∼6.2h) while the test set includes 2K positive ex-
amples (∼1h) and 5.9K negative examples (∼6h). The speak-
ers involved in each set are not overlapped. 40-dimensional
Mel-filterbank is used as acoustic features.

4.2. Experimental setups

In this work, we followed the same model architecture used
in [13]. For the encoder, 1-layer RNN with GRUs was
adopted. Compared with the positive examples, the negative

2https://www.chumenwenwen.com/product/tickasa-fox.html
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Fig. 4. ROC curves of different perturbed test sets (ε = 0.1).
Origin represents the original test set. Random means adding
random-sign perturbations to all test queries. FGSM means
adding FGSM perturbations to all test queries.

recordings usually had long duration, so we segmented the
negative examples with maximum length of 200 frames (2s)
during training. In the test stage, a sliding 200-frame window
was applied to the test examples and the window shift size
is 1-frame. The KWS system was triggered if at least one
segment’s score was larger than a pre-set threshold. Our ex-
periments were conducted using TensorFlow and ADAM [23]
was the optimizer.

4.3. Adversarial queries generation

Given a well-trained attention-based KWS model, we would
like to confirm if adversarial examples can be generated us-
ing FGSM. Specifically, we want to generate false-alarmed
queries based on negative examples and false-rejected queries
based on positive queries using FGSM. If these examples can
be generated easily, we can verify that the model is vulnera-
ble to adversarial examples. In other words, the model is not
smooth, because a very small perturbation in the input space
can lead to a huge change in the output space.

We generated adversarial examples using FGSM on the
test set data, as shown in Figure 2. For the positive example
perturbation (namely Pos-FGSM), perturbations were only
added to the keyword segment, as depicted in Figure 2 (a). As
for the negative example perturbation (namely Neg-FGSM),
perturbations were added directly to the entire utterance, as
depicted in Figure 2 (b). When we tested the attention KWS
model using the generated adversarial examples, we found
that FAR and FRR increased dramatically, as shown in Fig-
ure 4. We analyzed the attention layer’s weights of the “bad
case” queries before and after adding adversarial perturba-
tions. Figure 3 gives such an example, where the figures
depicts attention layer weight changing along the time for a
positive example (a) and a negative example (b). We found
that even an invisible small perturbation on the spectrum can
lead to very obvious changes in the attention layer. It seems
that the errors can be accumulated over time because the at-
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Table 1. Performance of retrained model using different aug-
mentation strategies. FRR is at 1.0 FAR per hour.

Type Origin Random Neg-FGSM Pos-FGSM All-FGSM
FRR (%) 7.67 6.59 5.77 4.17 5.41
Gain (%) 0 14.1 24.8 45.6 29.5
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Fig. 5. ROC curves of different data augmentation strategies
(ε = 0.1).

tention layer’s weights change much faster at the final part of
the queries.

As a sanity check, we also tested the random perturbation
case. Instead of using the gradient signs to generate the per-
turbations, random signs (+1 or −1) were used. Obviously,
from Figure 4, we found that adding random perturbations
to the test queries can slightly degrade the model’s perfor-
mance. On the contrast, adding FGSM perturbations to the
test queries can severely hurt the model, which means that the
model is clearly vulnerable to the adversarial examples. This
interesting phenomenon gives us further space to improve the
KWS model’s performance.

4.4. Training augmentation using adversarial examples

Observations from Section 4.3 show that the current model is
very sensitive to adversarial perturbations and the unsmooth
problem does exist. In order to improve model robustness,
we further augmented training data using adversarial exam-
ples. Specifically, we retrained the model using the training
strategy proposed by [19]. During the training stage, for every
mini-batch data, adversarial examples were generated dynam-
ically (positive and/or negative examples). Then these exam-
ples were used to train the model again. In this work, we also
tried different augmentation strategies, including augmenting
positive queries only, augmenting negative queries only or
augmenting all the queries. The model was initialized by a
well-trained model using normal training data only.

Figure 5 shows the ROC curves of all the methods with
ε = 0.1. Here, Pos-FGSM and Neg-FGSM mean that us-
ing positive and negative adversarial examples respectively
for data augmentation during training, while All-FGSM and
All-Random mean that adding adversarial and random-sign
perturbations to all the training data respectively. Table 1

Table 2. Performance of retrained model with different ε for
Pos-FGSM. FRR is at 1.0 FAR per hour.

ε Origin 0.01 0.10 0.20 0.30
FRR (%) 7.67 5.56 4.17 4.69 13.4
Gain (%) 0 27.5 45.6 38.9 -74.7
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Fig. 6. ROC curves of different ε for Pos-FGSM.

shows the FRR when FAR is at 1.0 on the test set. We can
see that the Pos-FGSM and Neg-FGSM based data augmenta-
tions can significantly reduce the FRR, with 45.6% and 24.8%
relative reduction, respectively. As a comparison, random
perturbation-based augmentation slightly improves the per-
formance. In summary, augmenting the training data with
adversarial queries is an effective way to improve model ro-
bustness.

As shown in Figure 6 and Table 2, we also tried different
adversarial weights ε for positive adversarial queries augmen-
tation (Pos-FGSM). When ε = 0.10, we can obtain the best
result. Larger value, such as ε = 0.30, may degrade the per-
formance because it introduces larger perturbations.

5. CONCLUSIONS

In this paper, we explored the use of adversarial examples
for improving the performance of an attention-based end-
to-end KWS model. We first verified that false-alarmed
and false-rejected queries could be created easily using the
FGSM-based adversarial example generation method. Then
we augmented the training data using these generated ad-
versarial examples to retrain our attention-based NN KWS
model. In summary, we discover that, tested on our corpus,
augmenting the training data with adversarial queries is an
effective way to improve model robustness. In future, we will
test our adversarial data augmentation approach on a larger
dataset to examine the performance. Moreover, as speech
is sequential data, we plan to take sequential information
into consideration and develop new approach to generate
adversarial examples specifically for speech data.
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