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ABSTRACT

Keyword spotting (KWS) system constitutes a critical componen-
t of human-computer interfaces, which detects the specific keyword
from a continuous stream of audio. The goal of KWS is providing a
high detection accuracy at a low false alarm rate while having small
memory and computation requirements. The DNN-based KWS sys-
tem faces a large class imbalance during training because the amount
of data available for the keyword is usually much less than the back-
ground speech, which overwhelms training and leads to a degenerate
model. In this paper, we explore the focal loss for the training of a
small-footprint KWS system. It can automatically down-weight the
contribution of easy samples during training and focus the model on
hard samples, which naturally solves the class imbalance and allows
us to efficiently utilize all data available. Furthermore, many key-
words of Chinese conversational assistants are repeated words due
to the idiomatic usage, such as ‘XIAO DU XIAO DU’. We propose
a double-edge-triggered detecting method for the repeated keyword,
which significantly reduces the false alarm rate relative to the single
threshold method. Systematic experiments demonstrate significant
further improvements compared to the baseline system.

Index Terms— keyword spotting, focal loss, double-edge-
triggered detecting method, speech recognition

1. INTRODUCTION

With the increasing popularity of mobile devices, speech-enabled
technologies are becoming more prevalent. Conversational assis-
tants running on smart phones or smart-home sensors try to provide
a fully hands-free experience for users. The keyword spotting (K-
WS) system is a critical component of human-computer interfaces,
which detects a specific keyword from a continuous stream of audio
and transits between different running states of the device [1, 2, 3].
Due to resource constraints of mobile devices, the proposed KWS
system must have a small memory and CPU footprint, while simul-
taneously providing very high detection accuracy and very low false
alarm (FA) rate.

Traditional approaches to KWS are based on Hidden Markov
Models (HMMs) and sequence search algorithms [4, 5, 6, 7]. HMM-
s are utilized to represent both the keyword and background audio.
The background model is also called the filler model and can be used
to model non-keyword speech, or noise etc. During decoding, Viter-
bi search is implemented to find the best path in the decoding graph.

The system is triggered when the likelihood ratio of the keyword
model to the background model exceeds a pre-defined threshold.

An alternative approach to KWS, based on deep neural network
(DNN) with no HMM involved, has been shown to significantly
outperform the Keyword/Filler HMM system [1, 8, 9, 10]. DNNs
are trained to identify sub keyword targets and the posterior han-
dling module calculates a single confidence score according to the
frame-level posterior scores. The system fires when the keyword
confidence score exceeds a pre-defined threshold. The trade-off be-
tween false rejects and false accepts can be implemented by tuning
the threshold, which is the key problem to enable satisfactory user
experience in practical applications.

However, the amount of data available for the keyword is typi-
cally much less than the background speech due to the cost of data
acquisition. KWS system faces a large class imbalance during train-
ing, which overwhelms the training and leads to a degenerate mod-
el. The focal loss [11] is intended to address the class imbalance of
dense object detection by adding a dynamically scaled factor to the
standard cross-entropy loss. It can automatically down-weight the
contribution of easy instances during training and focus the model
on hard instances.

In this paper, we explore the focal loss for the training of a small-
footprint KWS system, which naturally handles the class imbalance
and enables us to efficiently utilize all data obtainable. Experiments
show that the focal loss enables us to train a high-accuracy detector
that significantly outperforms the alternatives trained with the stan-
dard or weighted cross-entropy loss. In addition, there are many
repeated keywords in Chinese conversational assistants because of
the Chinese idiomatic usage, such as ‘XIAO DU XIAO DU’ and
‘XIAO AI XIAO AI’. The confidence score with the ordering con-
straint would rise twice if the keyword is repeated. We propose the
double-edge-triggered detecting method for the repeated keyword,
which significantly reduces the false alarm rate relative to the single
threshold method.

The rest of the paper is structured as follows. In Section 2, we
review the related work. In Section 3, we describe the proposed
DNN-based KWS system. We present the experiments and conclu-
sions in Section 4 and Section 5, respectively.

2. RELATED WORK

Deep learning-based KWS systems have been widely used due to
their superior performance [1]. Multi-style training [12], automatic
gain control (AGC) [13] and multi-task learning [14] are proposed in
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Fig. 1. Framework of Deep KWS system, components from left to
right: (i) Feature Extraction (ii) Deep Neural Network (iii) Posterior
Handling

order to improve system robustness. KWS systems face a large class
imbalance during training. A common solution is to use the class-
weighted cross-entropy loss [14], perform some form of hard nega-
tive mining [15] [16] or sampling/reweighing schemes [17]. Focal
Loss [11] is proposed to deal with class imbalance of dense object
detection, which can automatically down-weight the contribution of
easy examples during training and focus the model on hard exam-
ples. During the posterior handling, [12] defines a keyword score
which takes into account the relative order in which the keyword
targets are uttered.

3. DNN-BASED KEYWORD SPOTTING SYSTEM

A block diagram of our DNN-based KWS system is shown in Fig-
ure 1. Conceptually, our system consists of three modules: (1) a
feature extraction module which extracts acoustic features and in-
puts this into a neural network, (2) a DNN which computes posterior
probabilities of each word in the keyword phrase, and (3) a posterior
handling module which calculates a single confidence score accord-
ing to the frame-level posterior probabilities and makes a decision
whether the keyword is detected.

3.1. Focal Loss for DNN Training

Suppose that the keyword to be detected, w, consists of M words,
w = {w1, w2, · · · , wM} and w0 represents a word that does not
belong to any of the words in the keyword (denoted as ‘filler’ in Fig-
ure 1). For each frame, t, in the input speech, a feature vector denot-
ed by xt is fed into the neural network and the posterior probability
of the k-th label is denoted by pwk (xt). The network parameters are
usually trained to optimize a cross-entropy criterion. If the class la-
bel is one-hot form, the cross-entropy criterion becomes the negative
log-likelihood criterion. For the simplicity of notation, we consider
loss functions for a single frame. The cross-entropy loss is given by:

LCE(Φ) = − log pwk̂ (xt,Φ), (1)

where Φ are the parameters of the DNN, pwk̂ (xt,Φ) is the output
of the final softmax layer corresponding to the class label wk̂.

In the case of KWS, the amount of data available for the keyword
is normally much less than the background speech and non-speech
due to the cost of data acquisition. If we use all the available data for
training and don’t filter out background data, the positive samples
that belong to one of the keywords will be much less than the nega-
tive samples that do not belong to any of the words in the keyword.
This imbalance leads to an inefficient training as most training da-
ta are easy negatives that contribute no useful learning signal. And
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Fig. 2. The visualization of Focal Loss that adds a factor (1− pt)γ
to the cross-entropy criterion. Setting γ > 0 reduces the relative
loss for well-classified samples, putting more focus on hard, mis-
classified samples.

easy negative samples can overwhelm training and lead to a degen-
erate model. A simple method for addressing the class imbalance
is to weight the loss function, i.e., give a higher weight for a frame
if the label of the frame belongs to the keyword. More generally,
we define a weight vector ααα with elements αk > 0 defined over the
range of class labels k (wk ∈ {w0, w1, · · · , wM}). We write the
α-balanced CE loss as:

LWCE(Φ) = −αw
k̂

log pwk̂ (xt,Φ). (2)

In practiceαααmay be set the inverse of class frequencies or treated as
hyper-parameters to be set by cross validation.

The large class imbalance faced during training overwhelms the
cross entropy loss. Easily classified negative samples consist of the
majority of the loss and dominate the gradient back propagation.
While ααα balances the importance of positive/negative samples, it
does not make the difference between easy/hard samples. Instead,
we use the focal loss to automatically down-weight easy examples
and thus focus training on hard examples.

More formally, we add a dynamically scaling factor to the cross
entropy loss, with tunable focusing parameter γ ≥ 0. The focal loss
is defined as:

LFL(Φ) = −(1− pt,k)γ log(pt,k), (3)

where pt,k = pwk̂ (xt,Φ), is the posterior probability of the corre-
sponding label.

Figure 2 is a visualization of the focal loss for several values of
γ ∈ [0, 5]. As pt,k → 1, the modulating factor tends to 0 and the
loss for well-classified sample is down-weighted. When a sample is
misclassified and pt,k is small, the scaling factor is near to 1 and the
loss is unaffected. The focusing parameter γ smoothly modifies the
rate at which easy samples are down-weighted. When γ = 0, FL is
equivalent to CE. And as γ is increasing, the effect of the modulating
factor is also increasing.

Intuitively, the modulating factor reduces the loss contribution
from easy samples and extends the range in which a sample receives
low loss. For instance, with γ = 3, the loss of a sample classified
with pt,k = 0.9 is 1000 times lower than CE loss and with pt,k ≈
0.9536 it would have 10000 times lower loss. This in turn increases
the importance of correcting misclassified samples (whose loss is
scaled down by at most 8 times for pt,k ≤ 0.5 and γ = 3).
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Algorithm 1 Compute the keyword score.
Input: Sliding windows of the smoothed posterior values st(wk),

where 1 ≤ t ≤ Ts, 1 ≤ k ≤M (Ts is the sliding windows size
and M is the number of keyword).

Output: The ordered keyword score
1: // computing score for the first keyword
2: h(1, 1)← s1(w1)
3: for t = 2 to Ts do
4: h(t, 1)← max(h(t− 1, 1), st(w1))
5: end for
6: // computing score for the remaining keywords
7: for k = 2 to M do
8: h(k, k)← h(k − 1, k − 1) ∗ sk(wk)
9: for t = k + 1 to Ts do

10: h(t, k)← max(h(t− 1, k), h(t− 1, k − 1) ∗ st(wk))
11: end for
12: end for
13: return h(Ts,M)

3.2. Detecting Keywords using DNN Posteriors

We run our keyword detection algorithm repeatedly over sliding win-
dows of length Ts of the input signal in order to detect keywords
from a continuous stream of audio in real time. We denote x =
{x1, x2, · · · , xTs} as one input window over the utterance, includ-
ing individual frames xt ∈ Rn. In our experiments, these frames
are equal to filter-banks features, stacked with left and right context
features. We compute the smoothed posterior, st(wk), by averaging
the posteriors over the previous L frames,

st(wk) =
1

L

t∑
j=t−L+1

pwk (xj ,Φ), (4)

where pwi(xj ,Φ) is the posterior probability of the k-th label at the
j frame. Then the smoothed values are used to define the keyword
score, ĥ(x,w), as follows:

ĥ(x,w) =

[
M∏
k=1

max
1≤t≤Ts

st(wk)

] 1
M

, (5)

where the window sizes Ts and L are hyper-parameters to be set by
cross-validation.

The simplicity of the keyword score in (5) is the major advan-
tage. The score can be calculated in Θ(MT ) time, which has been
shown to achieve excellent KWS performance. However, this score
computation does not take into account the relative order in which
the keyword targets are uttered. Therefore, we define another key-
word score, h(x,w), as the largest product of the smoothed poste-
riors in the input sliding window, subject to the constraint that the
detected words are uttered in the same order as in the specified key-
word,

h(x,w) =

[
max

1≤t1<···<tM≤Ts

M∏
i=1

sti(wi)

] 1
M

. (6)

Although the keyword score in (6) contains additional con-
straints, it can still be calculated in Θ(MT ) time using dynamic
programming, which is described in Algorithm 1. The following
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Fig. 3. The keyword score containing relative order constraints if
the keyword is repeated. The left side is the real score curve, and the
right is the diagram.

experiments demonstrate that the ordering constraint imposed in (6)
significantly reduces FAs relative to the score in (5). All results in
this paper are therefore reported using the keyword score in (6).

3.3. Double-Edge-Triggered Detecting Method

After the keyword confidence score is computed, we usually use a
single threshold detecting method. The system fires if the score ex-
ceeds a pre-defined threshold. The trade-off between false rejects
and false accepts rate can be implemented by tuning the threshold. If
the keyword is repeated, such as ‘XIAO AI XIAO AI’, the keyword
score with the ordering constraint will rise twice, which is shown in
Figure 3. When a user utters the first part of the keyword, the order-
ing constraint is partly satisfied and the keyword score rises. When
the second part is uttered, the constraint is totally satisfied and the
score increases to a higher level. Therefore, we define two thresh-
olds δ1, δ2 for the repeated keyword, one is lower that detects the
first score rise and the other is higher that detects the second rise.
Only if the two rises are simultaneously detected, the system will
be triggered. We can adjust two thresholds δ1, δ2 to balance the FR
and FA rate. The proposed double-edge-triggered detecting method
can capture the essential characteristic of the confidence score and
significantly reduces the false alarm rate relative to the single thresh-
old method. Suppose the false alarm rate for a single threshold is 1

e
,

the FA rate for the double-edge-triggered detecting method is 1
e2

( 1
e
� 1

e2
as e� 1).

4. EXPERIMENT

4.1. Datasets

We develop our KWS system for the keyword “XIAO AI XIAO AI”
and “XIAO XIN XIAO XIN”. In order to evaluate the proposed
approach, we collect about 7K utterances containing the keyword
“XIAO AI XIAO AI” and 4K utterances containing “XIAO XIN X-
IAO XIN”. We also collect a much larger set of approximately 39K
utterances which do not contain any of the keywords and are used as
‘negative’ training data.

In order to improve system robustness, we perform multi-
condition training. Far-field sets are constructed by augmenting
the original set with impulse responses corresponding to various
configurations. And we artificially corrupt each utterance with a
variety of background noises at SNRs randomly sampled between
[0dB,+10dB], where the noise sounds are sampled from daily-life
environments. We also create a multi-speed training set by perturb-
ing the speed of the speech data. The utterances are then randomly
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(a) Results on clean speech

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

False Alarms

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

F
al

se
 R

ej
ec

ts

ROC

CE-Single
WCE-Single
FL-Single
FL-DETD

(b) Results on noisy speech

Fig. 4. ROC curves comparing performance of the system that em-
ploys cross-entropy (‘CE-Single’), weighted cross-entropy (‘WCE-
Single’), focal loss (‘FL-Single’) and double-edge-triggered detect-
ing method (‘FL-DETD’) for the clean and noisy evaluation sets.
Curves closer to the origin are better.

split into training, development, and evaluation sets in the ratio of
80:5:15, respectively. Models are trained in noisy conditions, and
evaluated in both clean and noisy conditions.

4.2. Setup

In the following experiments, our DNN models are feed-forward,
fully connected neural networks with three hidden layers of 128 neu-
rons, which meets the requirement of a small memory and CPU foot-
print. We take 40-dimensional filter-banks (computed over 32ms of
speech, with a 16ms frame-shift) as the input features, and each di-
mension of features is normalized to have zero mean and unit vari-
ance over the training set. We use 10 frames of left-context and 5
frames of right-context features as the final inputs in order to capture
temporal information. We use rectified linear unit (ReLU) activa-
tion functions for the hidden layers [18]. The softmax output layer
contains output targets for each word in the keyword phrase, plus
a single additional output target which represents all frames that do
not belong to any of the words in the keyword (denoted as ‘filler’ in
Figure 1). We determine labels for each input frame by performing
a forced-alignment using a large LVCSR system [19]. We run the
keyword detection algorithm over sliding windows of 100 frames
(Ts = 100) with posteriors smoothed over 30 frames (L = 30).

The baseline system is trained to optimize a cross-entropy cri-
terion (denoted as ‘CE’) and a weighted cross-entropy criterion (de-
noted as ‘WCE’). Our proposed model is trained by minimizing the
focal loss introduced in Section 3.1 (denoted as ‘FL’). We use the
Adam optimization algorithm [20] for training, with a batch size
of 128 and a learning rate of 0.0002. In addition, we compare the
proposed double-edge-triggered with the single threshold detecting
method during decoding. We calculate confidence scores using E-
quation (5) and make decisions by the different detecting methods.

KWS performance is measured by plotting a receiver operating
curve (ROC), which calculates the false reject (FR) rate per false
alarm (FA) rate. Detailed quantitative comparison is given at 0.5%
FA rate and our goal is to achieve low FR rates while maintaining
low FA rates.

4.3. Results

Firstly, we evaluate the impact of focal loss criterion on system
performance. Receiver operating characteristic (ROC) curves com-
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Fig. 5. Frame accuracy during training for focal loss (‘FL’) and
cross-entropy (‘CE’) criterion.

paring the systems of focal loss (‘FL-Single’), cross-entropy (‘CE-
Single’) and weighted cross-entropy (‘WCE-Single’) criterion are
presented in Figure 4. We use the single threshold detecting method
during decoding. As can be seen in the figure, the focal loss criterion
significantly improves performance over the baseline ‘WCE-Single’
system on the clean and noisy sets, with relative improvements of
15.4% (clean) and 12.5% (noisy) in FR rate at 0.5% FA rate. FL
can effectively discount the effect of easy negatives, focusing all
attention on the hard negative examples, which naturally solves the
class imbalance and allows us to efficiently utilize all data available.

In order to further make a comparison between focal loss and
cross-entropy loss criterion, we analyze the frame accuracy during
training. Figure 5 shows that the model trained by focal loss crite-
rion not only arrives at higher frame accuracy but also learns more
quickly.

We also investigate the double-edge-triggered detecting method
described in Section 3.3. ROC curves comparing the systems of
double-edge-triggered (‘FL-DETD’) and the single threshold (‘FL-
Single’) detecting method are presented in Figure 4. It can be seen
that the proposed double-edge-triggered detecting method signifi-
cantly outperforms the single threshold method. Compared with the
single threshold method, the proposed double-edge-triggered detect-
ing method uses two thresholds and detects two rises of the keyword
score for the repeated keyword, which significantly reduces the FA
rate and improves the system practical performance.

5. CONCLUSIONS

In this paper, we explore the focal loss for the training of a small-
footprint KWS system. It can automatically down-weight the contri-
bution of easy samples during training and focus the model on hard
samples, which naturally solves the class imbalance and allows us
to efficiently utilize all data available. Furthermore, we propose a
double-edge-triggered detecting method for the repeated keyword,
which significantly reduces the false alarm rate relative to the single
threshold method. Systematic experiments demonstrate significant
further improvements compared to the baseline system. In the fu-
ture, we will investigate the voice style transfer using deep learning
and develop a KWS system on a smaller dataset in order to reduce
the cost of data acquisition.

6. ACKNOWLEDGEMENTS

This work was supported by the China National Nature Science
Foundation (No. 61573357, No. 61503382, No. 61403370, No.
61273267, No. 91120303).

6364



7. REFERENCES

[1] Guoguo Chen, Carolina Parada, Heigold, and George, “Small-footprint
keyword spotting using deep neural networks,” pp. 4087–4091, 2014.

[2] Ming Sun, Varun Nagaraja, Bjrn Hoffmeister, and Shiv Vitaladevuni,
“Model shrinking for embedded keyword spotting,” in IEEE Interna-
tional Conference on Machine Learning and Applications, 2016, pp.
369–374.

[3] Qing He, Gregory W. Wornell, and Wei Ma, “An adaptive multi-band
system for low power voice command recognition,” in INTERSPEECH,
2016, pp. 1888–1892.

[4] R. C Rose, “A hidden markov model based keyword recognition sys-
tem,” Proc of Icassp Albuquerque Nm Usa, vol. 1, pp. 129–132 vol.1,
1990.

[5] Jay G Wilpon, Lawrence R Rabiner, Chin Hui Lee, and E. R Gold-
man, “Automatic recognition of keywords in unconstrained speech us-
ing hidden markov models,” IEEE Transactions on Acoustics Speech
and Signal Processing, vol. 38, no. 11, pp. 1870–1878, 1990.

[6] J. G Wilpon, L. G Miller, and P Modi, “Improvements and applications
for key word recognition using hidden markov modeling techniques,”
in International Conference on Acoustics, Speech, and Signal Process-
ing, 1991, pp. 309–312 vol.1.

[7] J. R. Rohlicek, W. Russell, S. Roukos, and H. Gish, “Continuous hid-
den markov modeling for speaker-independent word spotting,” in In-
ternational Conference on Acoustics, Speech, and Signal Processing,
1989, pp. 627–630 vol.1.

[8] Preetum Nakkiran, Raziel Alvarez, Rohit Prabhavalkar, and Carolina
Parada, “Compressing deep neural networks using a rank-constrained
topology,” 2015.

[9] Tara N Sainath and Carolina Parada, “Convolutional neural networks
for small-footprint keyword spotting,” in Sixteenth Annual Conference
of the International Speech Communication Association, 2015.

[10] George Tucker, Minhua Wu, Ming Sun, Sankaran Panchapagesan,
Gengshen Fu, and Shiv Vitaladevuni, “Model compression applied
to small-footprint keyword spotting,” in INTERSPEECH, 2016, pp.
1878–1882.

[11] Tsung Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollr,
“Focal loss for dense object detection,” pp. 2999–3007, 2017.

[12] Rohit Prabhavalkar, Raziel Alvarez, Carolina Parada, Preetum Nakki-
ran, and Tara N. Sainath, “Automatic gain control and multi-style train-
ing for robust small-footprint keyword spotting with deep neural net-
works,” in IEEE International Conference on Acoustics, Speech and
Signal Processing, 2015, pp. 4704–4708.

[13] Juan Pablo Alegre Prez, Santiago Celma Pueyo, and Beln Calvo Lpez,
Automatic Gain Control: Techniques and Architectures for RF Re-
ceivers, Springer Publishing Company, Incorporated, 2011.

[14] Sankaran Panchapagesan, Ming Sun, Aparna Khare, Spyros Mat-
soukas, Arindam Mandal, Bjrn Hoffmeister, and Shiv Vitaladevuni,
“Multi-task learning and weighted cross-entropy for dnn-based key-
word spotting,” in INTERSPEECH, 2016, pp. 760–764.

[15] K. K Sung, “Learning and example selection for object and pattern
detection,” PhD thesis, MIT AI Lab, 1995.

[16] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, S-
cott Reed, Cheng Yang Fu, and Alexander C. Berg, SSD: Single Shot
MultiBox Detector, Springer International Publishing, 2016.

[17] Samuel Rota Bulo, Gerhard Neuhold, and Peter Kontschieder, “Loss
max-pooling for semantic image segmentation,” 2017.

[18] M.D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. N-
guyen, A. Senior, V. Vanhoucke, and J. Dean, “On rectified linear units
for speech processing,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, 2013, pp. 3517–3521.

[19] Navdeep Jaitly, Patrick Nguyen, Andrew Senior, and Vincent Van-
houcke, “Application of pretrained deep neural networks to large vo-
cabulary conversational speech recognition,” Proc Interspeech, 2012.

[20] Diederik Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

6365


		2019-03-18T11:06:23-0500
	Preflight Ticket Signature




