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ABSTRACT

We explore the application of end-to-end stateless tempo-
ral modeling to small-footprint keyword spotting as opposed
to recurrent networks that model long-term temporal depen-
dencies using internal states. We propose a model inspired by
the recent success of dilated convolutions in sequence mod-
eling applications, allowing to train deeper architectures in
resource-constrained configurations. Gated activations and
residual connections are also added, following a similar con-
figuration to WaveNet. In addition, we apply a custom target
labeling that back-propagates loss from specific frames of in-
terest, therefore yielding higher accuracy and only requiring
to detect the end of the keyword. Our experimental results
show that our model outperforms a max-pooling loss trained
recurrent neural network using LSTM cells, with a significant
decrease in false rejection rate. The underlying dataset – “Hey
Snips” utterances recorded by over 2.2K different speakers –
has been made publicly available to establish an open refer-
ence for wake-word detection.

Index Terms— end-to-end keyword spotting, wake-word
detection, dilated convolution, open dataset

1. INTRODUCTION

Keyword spotting (KWS) aims at detecting a pre-defined key-
word or set of keywords in a continuous stream of audio.
In particular, wake-word detection is an increasingly impor-
tant application of KWS, used to initiate an interaction with a
voice interface. In practice, such systems run on low-resource
devices and listen continuously for a specific wake word. An
effective on-device KWS therefore requires real-time response
and high accuracy for a good user experience, while limiting
memory footprint and computational cost.

Traditional approaches in keyword spotting tasks involve
Hidden Markov Models (HMMs) for modeling both keyword
and background [1, 2, 3]. In recent years, Deep Neural Net-
works (DNNs) have proven to yield efficient small-footprint
solutions, as shown first by the fully-connected networks in-
troduced in [4]. More advanced architectures have been suc-
cessfully applied to KWS problems, such as Convolutional
Neural Networks (CNNs) exploiting local dependencies [5,
6]. They have demonstrated efficiency in terms of inference

speed and computational cost but fail at capturing large pat-
terns with reasonably small models. Recent works have sug-
gested RNN based keyword spotting using LSTM cells that
can leverage longer temporal context using gating mechanism
and internal states [7, 8, 9]. However, because RNNs may suf-
fer from state saturation when facing continuous input streams
[10], their internal state needs to be periodically reset.

In this work we focus on end-to-end stateless temporal
modeling which can take advantage of a large context while
limiting computation and avoiding saturation issues. By end-
to-end model, we mean a straight-forward model with a bi-
nary target that does not require a precise phoneme alignment
beforehand. We explore an architecture based on a stack of
dilated convolution layers, effectively operating on a broader
scale than with standard convolutions while limiting model
size. We further improve our solution with gated activations
and residual skip-connections, inspired by the WaveNet style
architecture explored previously for text-to-speech applica-
tions [11] and voice activity detection [10], but never applied
to KWS to our knowledge. In [12], the authors explore Deep
Residual Networks (ResNets) for KWS. ResNets differ from
WaveNet models in that they do not leverage skip-connections
and gating, and apply convolution kernels in the frequency
domain, drastically increasing the computational cost.

In addition, the long-term dependency our model can cap-
ture is exploited by implementing a custom “end-of-keyword”
target labeling, increasing the accuracy of our model. A max-
pooling loss trained LSTM initialized with a cross-entropy
pre-trained network is chosen as a baseline, as it is one of the
most effective models taking advantage of longer temporal
contexts [8]. The rest of the paper is organized in two main
parts. Section 2 describes the different components of our
model as well as our labeling. Section 3 focuses on the exper-
imental setup and performance results obtained on a publicly
available “Hey Snips” dataset1.

2. MODEL IMPLEMENTATION

2.1. System description

The acoustic features are 20-dimensional log-Mel filterbank
energies (LFBEs), extracted from the input audio every 10ms

1https://research.snips.ai/datasets/keyword-spotting
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Fig. 1: WaveNet architecture [11].

over a window of 25ms. A binary target is used, see Section
2.4 for more details about labeling. During decoding, the sys-
tem computes smoothed posteriors by averaging the output of
a sliding context window containing wsmooth frames, a pa-
rameter chosen after experimental tuning. End-to-end mod-
els such as the one presented here do not require any post-
processing step besides smoothing, as opposed to multi-class
models such as [4, 5]. Indeed, the system triggers when the
smoothed keyword posterior exceeds a pre-defined threshold.

2.2. Neural network architecture

WaveNet was initially proposed in [11], as a generative model
for speech synthesis and other audio generation tasks. It con-
sists in stacked causal convolution layers wrapped in a resid-
ual block with gated activation units as depicted in Figure 1.

2.2.1. Dilated causal convolutions

Standard convolutional networks cannot capture long tempo-
ral patterns with reasonably small models due to the increase
in computational cost yielded by larger receptive fields. Di-
lated convolutions skip some input values so that the con-
volution kernel is applied over a larger area than its own.
The network therefore operates on a larger scale, without the
downside of increasing the number of parameters. The recep-
tive field r of a network made of stacked convolutions indeed
reads:

r =
∑
i

di(si − 1),

where di refers to the dilation rate (di = 1 for normal con-
volutions) and si the filter size of the ith layer. Additionally,
causal convolutions kernels ensure a causal ordering of input
frames: the prediction emitted at time t only depends on pre-
vious time stamps. It allows to reduce the latency at inference
time.

2.2.2. Gated activations and residual connections

As mentioned in [11], gated activations units – a combination
of tanh and sigmoid activations controlling the propagation

Fig. 2: Dilated convolution layers with an exponential dila-
tion rate of 1, 2, 4, 8 and filter size of 2. Blue nodes are input
frame vectors, orange nodes are cached intermediate vectors
used for streaming inference, green nodes are output vectors
which are actually computed. ε refers to background.

of information to the next layer – prove to efficiently model
audio signals. Residual learning strategies such as skip con-
nections are also introduced to speed up convergence and ad-
dress the issue of vanishing gradients posed by the training of
models of higher depth. Each layer yields two outputs: one
is directly fed to the next layer as usual, but the second one
skips it. All skip-connections outputs are then summed into
the final output of the network. A large temporal dependency,
can therefore be achieved by stacking multiple dilated convo-
lution layers. By inserting residual connections between each
layer, we are able to train a network of 24 layers on relatively
small amount of data, which corresponds to a receptive field
of 182 frames or 1.83s. The importance of gating and residual
connections is analyzed in Section 3.3.2.

2.3. Streaming inference

In addition to reducing the model size, dilated convolutions
allow the network to run in a streaming fashion during in-
ference, drastically reducing the computational cost. When
receiving a new input frame, the corresponding posteriors are
recovered using previous computations, kept in memory for
efficiency purposes as described in Figure 2. This cached im-
plementation allows to reduce the amount of Floating Point
Operations per Second (FLOPS) to a level suiting production
requirements.

2.4. End-of-keyword labeling

Our approach consists in associating a target 1 to frames within
a given time interval ∆t before and after the end of the key-
word. The optimal value for ∆t is tuned on the dev set. Addi-
tionally, a masking scheme is applied, discarding background
frames outside of the labeling window in positive samples. A
traditional labeling approach, however, associates a target 1
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Train Dev Test

utterances 5876 2504 2588
Hey Snips speakers 1179 516 520

max / speaker 10 10 10

utterances 45344 20321 20821
Negative speakers 3330 1474 1469

max / speaker 30 30 30

Table 1: Dataset statistics.

to all frames aligned with the keyword. In this configuration,
the model has a tendency to trigger as soon as the keyword
starts, whether or not the sample contains only a fraction of
the keyword. One advantage of our approach is that the net-
work will trigger near the end of keyword, once it has seen
enough context. Moreover, our labeling does not need any
phoneme alignment, but only to detect the end of the keyword,
which is easily obtained with a VAD system (only needed for
labeling and not used for inference). Furthermore, thanks to
masking, the precise frontiers of the labeling window are not
learned, making the network more robust to labeling impre-
cisions. The relative importance of end-of-keyword labeling
and masking are analyzed in Section 3.3.2.

3. EXPERIMENTS

3.1. Open dataset

The proposed approach is evaluated on a crowdsourced close-
talk dataset. The chosen keyword is “Hey Snips” pronounced
with no pause between the two words. The dataset contains a
large variety of English accents and recording environments.
Around 11K wake-word utterances and 86.5K (∼96 hours)
negative examples have been recorded, see Table 1 for more
details. Note that negative samples have been recorded in the
same conditions than wake-word utterances, therefore arising
from the same domain (speaker, hardware, environment, etc.).
It thus prevents the model from discerning the two classes
based on their domain-dependent acoustic features.

Positive data has been cleaned by automatically removing
samples of extreme duration, or samples with repeated oc-
currences of the wake word. Positive dev and test sets have
been manually cleaned to discard any mispronunciations of
the wake word (e.g. “Hi Snips” or “Hey Snaips”), leaving
the training set untouched. Noisy conditions are simulated
by augmenting samples with music and noise background au-
dio from Musan [13]. The positive dev and test datasets are
augmented at 5dB of Signal-to-noise Ratio (SNR).

The full dataset and its metadata are available for research
purposes2. Although some keyword spotting datasets are freely
available, such as the Speech Commands dataset [14] for voice

2https://research.snips.ai/datasets/keyword-spotting

commands classification, there is no equivalent in the specific
wake-word detection field. By establishing an open reference
for wake-word detection, we hope to contribute to promote
transparency and reproducibility in a highly concurrent field
where datasets are often kept private.

3.2. Experimental setup

The network consists in an initial causal convolution layer
(filter size of 3) and 24 layers of gated dilated convolutions
(filter size of 3). The 24 dilation rates are a repeating se-
quence of {1, 2, 4, 8, 1, 2, 4, 8...}. Residual connections are
created between each layer and skip connections are accumu-
lated at each layer and are eventually fed to a DNN followed
by a softmax for classification as depicted in Figure 1. We
used projection layers of size 16 for residual connections and
of size 32 for skip connections. The optimal duration of the
end-of-keyword labeling interval as defined in Section 2.4 is
∆t = 160ms (15 frames before and 15 frames after the end
of the keyword). The posteriors are smoothed over a sliding
context window of wsmooth = 30 frames, also tuned on the
dev set.

The main baseline model is a LSTM trained with a max-
pooling based loss initialized with a cross-entropy pre-trained
network, as it is another example of end-to-end temporal model
[8]. The idea of the max-pooling loss is to teach the network
to fire at its highest confidence time by back-propagating loss
from the most informative keyword frame that has the maxi-
mum posterior for the corresponding keyword. More specif-
ically, the network is a single layer of unidirectional LSTM
with 128 memory blocks and a projection layer of dimen-
sion 64, following a similar configuration to [8] but matching
the same number of parameters than the proposed architecture
(see Section 3.3.1). 10 frames in the past and 10 frames in the
future are stacked to the input frame. Standard frame labeling
is applied, but with the frame masking strategy described in
Section 2.4. The authors of [8] mentioned back-propagating
loss only from the last few frames, but said that the LSTM
network performed poorly in this setting. The same smooth-
ing strategy is applied on an window wsmooth = 8 frames,
after tuning on dev data. For comparison, we also add as a
CNN variant the base architecture trad-fpool3 from [5],
a multi-class model with 4 output labels (“hey”, “sni”, “ps”,
and background). Among those proposed in [5], this is the ar-
chitecture with the lowest amount of FLOPS while having a
similar number of parameters as the two other models studied
here (see Section 3.3.1).

The Adam optimization method is used for the three mod-
els with a learning rate of 10−3 for the proposed architecture,
10−4 for the CNN, and 5 · 10−5 for the LSTM baseline. Ad-
ditionally, gradient norm clipping to 10 is applied. A scaled
uniform distribution for initialization [15] (or “Xavier” ini-
tialization) yielded the best performance for the three models.
We also note that the LSTM network is much more sensitive
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Model Params FLOPS FRR clean FRR noisy

WaveNet 222K 22M 0.12 1.60
LSTM 257K 26M 2.09 11.21
CNN 244K 172M 2.51 13.18

Table 2: Number of parameters, multiplications per second,
and false rejection rate in percent on clean (FRR clean) and
5dB SNR noisy (FRR noisy) positive samples, at 0.5 false
alarms per hour.

to the chosen initialization scheme.

3.3. Results

3.3.1. System performance

The performance of the three models is first measured by ob-
serving the False Rejection Rate (FRR) on clean and noisy
(5dB SNR) positives samples at the operating threshold of
0.5 False Alarms per Hour (FAH) computed on the collected
negative data. Hyper parameters are tuned on the dev set and
results are reported on the test set. Table 2 displays these
quantities as well as the number of parameters and multipli-
cations per second performed during inference. The proposed
architecture yields a lower FRR than the LSTM (resp. CNN)
baseline with a 94% (resp. 95%) and 86% (resp. 88%) de-
crease in clean and noisy conditions. The number of param-
eters is similar for the three architectures, but the amount of
FLOPS is higher by an order of magnitude for the CNN base-
line while resulting in a poorer FRR in a noisy environment.
Figure 3 provides the Detection Error Tradeoff (DET) curves
and shows that the WaveNet model also outperforms the base-
lines on a whole range of triggering thresholds.

(a) clean (b) noisy (5dB SNR)
Fig. 3: DET curves for the proposed architecture (green) com-
pared to the LSTM (dotted yellow) and CNN (dashed blue)
baselines in clean (a) and noisy (b) environments.

3.3.2. Ablation analysis

To assess the relative importance of some characteristics of
the proposed architecture, we study the difference in FRR ob-
served once each of them is removed separately, all things

FRR clean FRR noisy

Default labeling +0.36 +1.33
No masking +0.28 +0.46
No gating +0.24 +2.57

Table 3: Variation in FRR (absolute) for the proposed archi-
tecture when removing different characteristics separately, all
things being equal.

being equal. Table 3 shows that the end-of-keyword label-
ing is particularly helpful in improving the FRR at a fixed
FAH, especially in noisy conditions. Masking background
frames in positive samples also helps, but in a lower magni-
tude. Similarly to what is observed in [10], gating contributes
to improving the FRR especially in noisy conditions. We fi-
nally observed that removing either residual or skip connec-
tions separately has little effect on the performance. However,
we could not properly train the proposed model without any
of these connections. It seems to confirm that implementing
at least one bypassing strategy is key for constructing deeper
network architectures.

4. CONCLUSION

This paper introduces an end-to-end stateless modeling for
keyword spotting, based on dilated convolutions coupled with
residual connections and gating encouraged by the success
of the WaveNet architecture in audio generation tasks [11,
10]. Additionally, a custom frame labeling is applied, asso-
ciating a target 1 to frames located within a small time in-
terval around the end of the keyword. The proposed archi-
tecture is compared against a LSTM baseline, similar to the
one proposed in [8]. Because of their binary targets, both
the proposed model and the LSTM baseline do not require
any phoneme alignment or post-processing besides posterior
smoothing. We also added a multi-class CNN baseline [5]
for comparison. We have shown that the presented WaveNet
model significantly reduces the false rejection rate at a fixed
false alarm rate of 0.5 per hour, in both clean and noisy en-
vironments, on a crowdsourced dataset made publicly avail-
able for research purposes. The proposed model seems to be
very efficient in the specific domain defined by this dataset
and future work will focus on domain adaptation in terms of
recording hardware, accents, or far-field settings, to be de-
ployed easily in new environments.
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