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ABSTRACT

This paper presents a novel dual-microphone speech enhancement

algorithm to improve noise robustness of hotword (wake-word) de-

tection as a special application of keyword spotting. It exploits two

unique properties of hotwords: they are leading phrases of valid

voice queries that we intend to respond and have short durations.

Consequently an STFT-based adaptive noise cancellation method

modified to use deferred filter coefficients is proposed to extract hot-

words out from noisy stereo microphone signals. The new algorithm

is tested with two considerably different neural hotword detectors.

Both systems have significantly reduced the false-reject rate when

background has strong TV noise.

Index Terms— Keyword spotting and hotword/wake-word de-

tection, dual-microphone noise reduction, adaptive filter with de-

ferred coefficients, smart speech enhancement, microphone array

processing for machine learning

1. INTRODUCTION

Voice-enabled interfaces are no longer futurist speculation. Recently

they have evolved into strategic solutions for enhanced user experi-

ence and new business opportunities, as exemplified by Google As-

sistant and Amazon Alexa. These solutions all aim to deliver full

hands-free interaction by using a keyword spotting (KWS) method

to control voice input. The KWS algorithm continuously monitors

a stream of audio for a preset phrase (i.e., keyword like “Ok/Hey

Google” and “Alexa”) and activates speech recognition and compre-

hension upon detecting it.

KWS systems run on client devices, such as mobile phones

or smart speakers, so it’s critical that they run at low latency with

small memory and compute footprints. Early dynamic time warping

(DTW) based template matching methods have some difficulties to

meet these prerequisites and their performance was quite poor [1, 2].

It was the advent of the hidden Markov model (HMM) that made

KWS an increasingly popular topic for research [3, 4, 5, 6]. So far

the arguably most exciting advance in this field was driven by deep

learning and big data [7]. Many successful systems have been report-

edly built on a variety of neural network (NN) structures, includ-

ing deep neural network (DNN) [8], convolutional neural network

(CNN) [9], deep residual network (ResNet) [10], recurrent neural

network (RNN) [11, 12], long short-time memory (LSTM) [13, 14].

Voice assistants must be usable in a wide range of acoustic con-

ditions. Multi-style training (MTR) has been useful to fight far-field

distortions and moderate non-speech noise [15]. But speech-like in-

terference (e.g., TV noise) remains a challenging issue. We have also

investigated a number of beamforming and multichannel Wiener fil-

tering algorithms. Although helpful, they can produce only marginal

improvement with a small array of two microphones. It is note-

worthy that some promising results were obtained with the so-called

keyword sifter [16]. This new approach complements a KWS sys-

tem with a top-down mechanism such that selective attention (aka

the cocktail-party effect [17]) can be mimicked. But the sifter needs

to run the KWS classifier twice in succession, potentially increas-

ing latency and CPU usage. Moreover, an additional parameter, the

threshold at which to activate the sifter, must be tuned via experi-

mentation and it is impossible to have one value that fits all signal-

to-noise ratios (SNRs).

In this paper, we address hotword detection (Google’s term for

wake-word detection) as a special application of KWS. KWS is re-

garded as a more general-purpose task in which a keyword can take

place anytime anywhere, while in hotword detection a hotword al-

ways precedes a voice query. By exploiting this unique property, we

have developed another effective yet much simpler speech enhance-

ment algorithm for hotword detection on devices with two micro-

phones.

2. HOTWORD CLEANER

When we use two microphones that are separated by a small dis-

tance to capture sound from surrounding speakers and ambient noise

sources, the two microphone signals are coherent. If an adaptive fil-

ter is applied to one microphone signal and the result is subtracted

from the other microphone signal like in adaptive noise cancellation

(ANC) [18], the residual error would have smaller magnitudes. But

this inevitably cancels not only noise but also speech. Since speech

and noise signals presumably maintain different coherence levels at

the two microphones, a useful adaptive filter for noise cancellation

is the one that compensates only the noise coherence. This requires

a mechanism to supervise the operation of adaptive filtering: ideally,

adaptation should be performed when speech is absent and must be

halted otherwise. The keyword sifter [16] relies on a neural KWS

classifier to compute such a speech/noise mask. In this paper, we

propose a simple alternative, hotword cleaner, which is completely

based on signal processing.

The hotword cleaner makes the following two assumptions:

1) A hotword is the leading phrase of a valid voice query, which

implies that the short segment immediately preceding a hotword

contains no speech from the hotword speaker but only noise or

other competing speaker’s speech.

2) A hotword has a short duration, typically less than 1 s.

As illustrated by Fig. 1, the cleaner consists of two processing lay-

ers, one on top of the other. The bottom layer works like a tradi-

tional ANC system that adjusts the filter coefficients repeatedly to

minimize the mean square of the prediction error e(n) between the

two microphone signals. But we don’t take e(n) as the cleaner’s
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Fig. 1: Illustration of dual-microphone hotword cleaner using an adaptive noise cancellation filter with deferred filter coefficients.

output. The bottom layer saves the estimated filter coefficients into a

first-in-first-output (FIFO) buffer. In the top layer, the buffer output

which is a set of filter coefficients with a delay of d frames is used to

process the two microphone signals and produce the cleaned signal

output ε(n).
Let’s briefly explain why the cleaner is able to achieve the goal

of speech enhancement. At the leading edge of a hotword, the fil-

ter coefficients used in the top layer are estimated d frames before

the current time where, according to the first assumption above, the

person saying the hotword wasn’t speaking yet. This means that the

filter coefficients don’t compensate the hotword coherence across the

two microphones, so only the noise is canceled while the hotword is

retained in the cleaner’s output. Thanks to the second assumption we

made above, and because hotwords are usually short, it is straight-

forward to select a value for d such that the time span of d frames is

almost always greater than the duration of the hotword. As a result,

even by the time we come to the trailing end of the hotword, the co-

efficients popped out from the buffer have not been affected by the

hotword and signal cancellation won’t occur.

Similar to the keyword sifter, an important design parameter for

the cleaner is d, i.e., the buffer length for filter coefficients. If d is

much smaller than the length of hotwords, many filtered hotword

samples at the cleaner’s output will experience severe signal cancel-

lation around their tails, leading to low confidence in recognizing

their last several phones. But, on the contrary, if d is too large,

cross-microphone noise coherence may have significantly changed

over such a period of time. Using the deferred filter coefficients can

only achieve a low gain in noise reduction. In our research for de-

tection of “Ok Google” and “Hey Google”, d is set to a value with

an equivalent delay of 768ms.

3. FAST-RLS WITH DEFERRED FILTER COEFFICIENTS

Generally speaking, any adaptive filters can be modified to allow

for deferred filter coefficients. As an example, Table 1 presents the

modifications we made to the fast recursive least squares (RLS) al-

gorithm in the short-time Fourier transform (STFT) domain (see for

comparison Table 1 of [16]). Since we have followed the same nota-

tion used in [16], the detailed definition of variables is not repeated

here for brevity of presentation.

Table 1: Summary of the STFT-domain fast RLS algorithm with

deferred filter coefficients.

Parameters:

d = size of the delay buffer in number of frames

L = filter length, λ = forgetting factor

δ = coefficient to initialize P(0)

Initialization:

h(0) = 0, x2(0) = 0,

P(0) = δ−1I, where I is the identity matrix of rank L.

Adaptation: for frames m = 1, 2, · · ·

A-priori error:

E(m) = X1(m)− hH(m− 1)x2(m),

Kalman gain vector:

g(m) =
P(m− 1)x2(m)

λ+ xH

2
(m)P(m− 1)x2(m)

,

Update:

P(m) = λ−1
[

P(m− 1)− g(m)xH

2 (m)P(m− 1)
]

,

h(m) = h(m− 1) + g(m)E∗(m),

Output:

E(m) = X1(m)− hH(m− d)x2(m).

4. NEURAL DETECTORS

It is widely known that speech enhancement algorithms, while im-

proving SNRs, can introduce distortion. Some hotword detectors

can be more sensitive than others to speech distortion. So, we tested

the proposed hotword cleaner with two detectors that have consid-

erably different architectures. They have the same frontend feature

extractor but differ in acoustic model (AM) and decoder. In the first

detector, AM is accomplished by a CNN and the decoder simply

searches for a best path of the hotword’s phoneme sequence. The

second detector has an end-to-end (E2E) structure and uses NNs for

both AM and decoder [19].

For feature extraction, a single-channel audio signal is first seg-

mented into 25ms long frames with 10ms hops. For each frame, 40-
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Table 2: Comparison of the CNN and E2E models in number of

parameters and multiply-accumulate (MAC) operations.

Model #Params MAC/10ms

CNN 1.71M 1.86M

E2E 0.32M 0.16M
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Fig. 2: Three strategies for integrating hotword cleaner and detector:

(a) baseline, (b) cleaner-only, and (c) hybrid.

channel log-mel-filter-bank energies (LMFBEs) are computed and

normalized using per-channel energy normalization (PCEN) [20].

The CNN model takes stacked LMFBE feature vectors as inputs,

with 24 left and 15 right context frames. The convolutional layer

sweeps 92 non-overlapping 8× 8 patches across time and frequency

and generates 92×(40/8)×(40/8) = 2300 outputs. The following

three hidden layers are fully-connected dense layers with rectified

linear unit (ReLU) and producing 512 outputs. The last layer is also

a dense layer but the activation function is softmax. The outputs

are posterior probabilities of 7 phone classes (6 phones in “Ok/Hey

Google” and one for others including silence).

The E2E model runs in streaming mode. Its input feature vec-

tor consists of only 3 LMFBE frames with 1 left and 1 right context

frame. To make the model smaller, SVDF layers are deployed [21].

The AM NN contains 4 such layers and each is followed by a bot-

tleneck layer with linear activation function. The last AM layer also

outputs posterior probabilities of 7 phone classes. The decoder NN

has 3 SVDF layers but no bottleneck layers. The last layer is a dense

layer using softmax to produce the posterior probability of finding

a hotword. Note that the two NNs were trained successively rather

than jointly [19].

Table 2 presents a comparison of the CNN and E2E models in

terms of size and arithmetic complexity: the E2E model is more than

5x smaller and 11-fold faster than the CNN model.

5. SYSTEM INTEGRATION STRATEGIES

For a two-microphone audio system, if hotword detection can be

performed individually on each microphone signal, it is like ask-

ing two listeners to monitor the same sound field collaboratively:

a hotword is deemed identified if any of the listeners identifies one.

Such an approach can reduce false rejects (FRs) but can also increase

false accepts (FAs). So a pair of detectors of roughly equal accu-

racy that work collectively may not significantly outperform each

of the detectors. But if they have diversified yet complementary

strengths/weaknesses, we can benefit from a well-thought-out inte-

gration strategy.

Figure 2 portrays three strategies for cleaner system integration.

The baseline strategy is a two-microphone system which computes

logical-or of the two independent hotword detection results on each

Table 3: Summary of collected data for performance evaluation.

Dataset Number of Utterances Length (hours)

Far-Field Clean 6,274 29.1

TV Noise 5,694 27.5

Negative 55,469 1,175.1
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Fig. 3: Sample stereo utterance with TV noise processed by the hot-

word cleaner: (a) the left microphone signal, (b) the right micro-

phone signal, and (c) the cleaned signal.

input audio channel. The cleaner-only strategy runs detection only

on the cleaner output. Finally, the hybrid strategy takes the logical-

or of hotword detection on the cleaned audio and on one channel of

the original audio.

While the cleaner-only strategy is typically how speech en-

hancement algorithms are applied, there is a key advantage to the

hybrid strategy: latency. Applying the cleaner adds a significant lag

to the audio stream of 128ms (STFT window size). In the cleaner-

only strategy, all hotword detections will suffer from this increased

latency. However, in the hybrid strategy, there need not be any ad-

ditional latency in cases where the hotword detector triggers on the

non-cleaned audio channel. Thus, the hotword cleaner will add de-

tection latency only on utterances where hotword detection would

have failed without it. The second advantage of the hybrid strategy

is the corner case where a user is talking before he says the hotword.

In this case, hotword detection is likely to fail on the cleaned channel

but succeed on the uncleaned.

On the other hand, the potential advantages of the cleaner-only

approach are that (1) the cleaner can reduce false alarms due to noise

sources such as TVs, and (2) only a single instance of the hotword

detector must be run.

6. EXPERIMENTS

6.1. Experimental Setup

We use real re-recorded data to evaluate the proposed hotword

cleaner. The experimental setup is similar to that described in [16],

but this study includes a larger set of data with longer preambles.

Due to the limitation of space, positive datasets consider only two

conditions: far-field clean and TV noise in the background. The neg-

ative dataset is composed of television audio recorded on a far-field

Google Home. Table 3 gives a summary of the data.

Again, NNs were implemented using Google’s TensorFlowTM

library [22] and trained with deep learning algorithms on both logs

and collected data from gender-balanced pool of volunteers with a
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Fig. 4: ROCs comparing performance of the keyword sifter and hotword cleaner against their baseline systems working with CNN and E2E

models on far-field clean and TV-noise datasets. Note that for the systems using the same NN model marker positions correspond to the same

threshold.

variety of accents [23].

In this paper, we have used the following parameters for the hot-

word cleaner: 16 kHz sampling rate, 128ms windows with 50%

overlap, d = 12, L = 3, λ = 0.993, and δ = 0.1. For the keyword

sifter, the parameters are the same as that used in [16] – in particular

the near-trigger threshold is set to 1% of the NN model’s threshold.

6.2. Cleaned Sample Utterance

First, we would like to present a sample utterance processed by

the hotword cleaner to give the reader an intuitive feel for how the

cleaner helps fight background TV noise. As shown in Fig. 3(a) and

(b), the utterance lasts for 16 s and is heavily contaminated by TV

noise. The hotword appears around 8.5 s and the input SNR is about

0 dB. Figure 3(c) plots the cleaned signal. Simply by visual exam-

ination, it is evident that the hotword has stood out and the output

SNR has greatly improved. It is interesting to note that the cleaner

follows an acoustic scene change with a lag of about 1.5 s.

6.3. Receiver Operating Curves (ROCs)

For hotword detection, the most informative performance measure is

a ROC, which visualizes the FR rate (in number of FRs per instance)

as a function of the FA rate (in number of FAs per hour). Figure 4

presents the ROCs of the 5 tested systems. The baseline is after

what was described by Fig. 2(a). The cleaner-only and sifter-only

systems follow the strategy of Fig. 2(b). The cleaner-hybrid and

sifter-hybrid systems follow the strategy of Fig. 2(c). On the far-field

clean dataset, the performance of either model is comparable with

and without the hotword cleaner. But the cleaner remarkably reduces

the FR rate on the TV-noise dataset: a relative improvement of 66%

with both models at the operating point of a fixed threshold. The

cleaner also outperforms the keyword sifter in these experiments.

The performance degradation caused by using the hybrid strategy

over the cleaner-only strategy on these datasets is merely marginal.

7. CONCLUSIONS

In this paper we have presented a dual-microphone speech enhance-

ment algorithm code-named as hotword cleaner for robust hotword

detection in noisy environments. It takes advantage of two unique

properties associated with hotwords: hotwords are always leading

phrases in valid voice queries and hotwords are short in duration. So

a STFT-based adaptive noise cancellation algorithm with deferred

filter coefficients was proposed to extract hotwords from noisy stereo

microphone signals. The hotword cleaner was tested with two detec-

tors which have considerably different architectures: CNN and E2E.

In both cases, cleaner reduced the FR rate by over 66% relative on

re-recorded utterances with strong TV background noise.

8. ACKNOWLEDGMENTS

The authors would like to thank Thad Hughes and Taylor Applebaum

for their support and involvement in the early stage of this research.

6349



9. REFERENCES

[1] J. S. Bridle, “An efficient elastic-template method for detecting

given words in running speech,” Brit. Acoust. Soc. Meeting, pp.

1–4, Apr. 1973.

[2] A. L. Higgins and R. E. Wohlford, “Keyword recognition using

template concatenation,” in Proc. IEEE ICASSP, 1985, pp.

1233–1236.

[3] R. C. Rose and D. B. Paul, “A hidden Markov model based

keyword recognition system,” in Proc. IEEE ICASSP, 1990,

pp. 129–132.

[4] J. R. Rohlicek, W. Russell, S. Roukos, and H. Gish, “Con-

tinuous hidden Markov modeling for speaker-independent

wordspotting,” in Proc. IEEE ICASSP, 1990, pp. 627–630.

[5] J. G. Wilpon, L. R. Rabiner, C.-H. Lee, and E. Goldman, “Au-

tomatic recognition of keywords in unconstrained speech using

hidden Markov models,” EEE Trans. Acoust., Speech, Signal

Process., vol. 38, pp. 1870–1878, Nov. 1990.

[6] J. G. Wilpon, L. G. Miller, and P. Modi, “Improvements and

applications for key word recognition using hidden Markov

modeling techniques,” in Proc. IEEE ICASSP, 1991, pp. 309–

312.

[7] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed,

N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,

and B. Kingsbury, “Deep neural networks for acoustic mod-

eling in speech recognition,” IEEE Signal Process. Mag., vol.

29, no. 6, pp. 82–97, September 2012.

[8] G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword

spotting using deep neural networks,” in Proc. IEEE ICASSP,

2014, pp. 4087–4091.

[9] T. N. Sainath and C. Parada, “Convolutional neural networks

for small-footprint keyword spotting,” in Proc. InterSpeech,

2015, pp. 1478–1482.

[10] R. Tang and J. Lin, “Deep residual learning for small-footprint

keyword spotting,” in Proc. IEEE ICASSP, 2018, pp. 5484–

5488.

[11] S. Fernández, A. Graves, and J. Schmidhuber, “An application

of recurrent neural networks to discriminative keyword spot-

ting,” in Proc. Int. Conf. Artificial Neural Networks, 2007, pp.

220–229.

[12] P. Baljekar, J. F. Lehman, and R. Singh, “Online word-spotting

in continuous speech with recurrent neural networks,” in Proc.

Spoken Language Technology Workshop (SLT), 2014, pp. 536–

541.
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