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ABSTRACT

The manner in which acoustic features contribute to per-
ceiving speaker identity remains unclear. In an attempt to
better understand speaker perception, we investigated human
and machine speaker discrimination with utterances shorter
than 2 seconds. Sixty-five listeners performed a same vs.
different task. Machine performance was estimated with i-
vector/PLDA-based automatic speaker verification systems,
one using mel-frequency cepstral coefficients (MFCCs) and
the other using voice quality features (VQual2) inspired by a
psychoacoustic model of voice quality. Machine performance
was measured in terms of the detection and log-likelihood-
ratio cost functions. Humans showed higher confidence
for correct target decisions compared to correct non-target
decisions, suggesting that they rely on different features
and/or decision making strategies when identifying a single
speaker compared to when distinguishing between speak-
ers. For non-target trials, responses were highly correlated
between humans and the VQual2-based system, especially
when speakers were perceptually marked. Fusing human re-
sponses with an MFCC-based system improved performance
over human-only or MFCC-only results, while fusing with
the VQual2-based system did not. The study is a step towards
understanding human speaker discrimination strategies and
suggests that automatic systems might be able to supplement
human decisions especially when speakers are marked.

Index Terms— Speaker perception, automatic speaker
verification, voice quality, speaker discrimination

1. INTRODUCTION

Humans have a notable ability to distinguish individuals by
their voices. Because perception studies suggest that distin-
guishing unfamiliar voices involves acoustic feature compar-
isons [1, 2, 3], we employed an unfamiliar speaker discrim-
ination task to identify such features. In this task, listeners
compared two speech samples to determine if they came from
one speaker or from two different speakers. For automatic
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systems, speaker discrimination can be thought of as a spe-
cial case of speaker verification where speakers are enrolled
with one utterance.

Performance comparison between humans and machines
on text-independent speaker discrimination tasks show that
machines outperform humans on long utterances in certain
conditions (e.g. [4, 5]). On very short utterances, how-
ever, machines seemingly perform worse than humans. For
example, a state-of-the-art automatic speaker verification
(ASV) system had an equal error rate of 22.31% with 2-sec-
long pairs [6], while human listeners showed 11.4% miss
and 19.7% false alarm rates for single sentence (≈ 2 sec)
pairs [7]. If humans are more accurate at this task, un-
derstanding perception might provide insights to improve
machine performance.

Studies also suggest that speaker perception involves
comparing voice tokens to stored prototypes in addition to
featural comparisons [7, 8]. In the prototype model, humans
encode the identity of a voice in terms of its deviations from
an internal representation of a prototype or average voice.
This model predicts that voices are more accurately identified
if they are similar to the prototype than if they are dissim-
ilar. Behavioral studies have provided evidence for such a
model [9, 10]. However, acoustic features that characterize
prototypes or the way in which they contribute to the model
is not yet clear.

Automatic speaker discrimination can be viewed as anal-
ogous to the prototype model in that standard ASV systems
build a universal background model (UBM, [11]) to represent
an average speaker model, and the identity of a speaker is
represented as a deviation from the UBM. Unlike perception
studies, researchers can design a feature set to better repre-
sent speaker identity. In this sense, a reverse engineering ap-
proach relating human and ASV decisions might help develop
a quantitative model for speaker perception.

Motivated by studies emphasizing the importance of voice
quality for speaker perception [12], a voice quality feature
set based on a psychoacoustic model [13, 14] was applied
to ASV in our previous studies [15, 16]. This improved
text-independent ASV system performance on very short-
utterances (≈ 2 sec). We then analyzed how humans and
machines performed on a text-independent, short-utterance
speaker discrimination task [17]. In that study, multidi-
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mensional scaling was used to infer speaker spaces from
the human and machine responses. Here, we further ana-
lyze the results of that study, focusing on the relationship
between human and machine responses. Neurological data
showed that speaker recognition and discrimination are sepa-
rate abilities [1]. Considering that, we assume that perceptual
strategies differ between target (same speaker pairs) and non-
target trials (different speaker pairs). In this context, we relate
responses by humans and machines for target and non-target
trials, separately.

2. DATABASES

2.1. UCLA Speaker Variability Database

The UCLA Speaker Variability Database [18, 19] includes
speech samples from 103 female and 105 male speakers, re-
flecting ordinary variations in voice quality due to multiple
recording sessions, phonetic content, speaking style, and af-
fect conditions. The speakers were recorded on 3 different
days in a sound-attenuated booth, with a sampling rate of 22
kHz and a fixed mouth-to-microphone distance.

This study chose read sentences among the speech tasks
in the database to represent the most stable and least vary-
ing type of continuous speech. Fifty female self-reported
native speakers of English were randomly selected from the
database. Post hoc listening by two linguists indicated that
utterances from 9 speakers were perceptually “marked” by
a non-American dialect (5 speakers), overly-precise articula-
tion, and/or unusual dysfluencies in reading (4 speakers). The
remaining 41 speakers lacked such personal idiosyncrasies,
and are referred to as “unmarked”.

2.2. NIST Speaker Recognition Evaluation Database

While the UCLA Speaker Variability Database provided
all the evaluation utterances for the present study, separate
speech databases were used to train the ASV systems tested
here. The speaker recognition evaluation (SRE) databases
developed by the National Institute of Standards and Tech-
nology (NIST) are often used to train a UBM and speaker
variability subspaces; we used the SRE04, 05, 06, and 08
databases for this purpose [20, 21, 22]. Since the evaluation
utterances were all from female speakers, only the recordings
from female speakers were used for training. In addition,
evaluation recordings were downsampled to an 8 kHz sam-
pling rate to match the bandwidth of the SRE databases.

3. METHOD

3.1. Perceptual Speaker Discrimination

For each speaker, three read sentences (< 2 sec each) were
selected from each of the 3 recording sessions. These stim-
uli were assembled into 50 pairs of speakers in which both

speech samples came from the same speaker and 1,225 pairs
where the two speakers were different, for a total of 1,275
pairs. Stimuli were always drawn from different recording
sessions, and two different sentences were used. Thus, this
task is always text- and recording session-mismatched.

To minimize listener fatigue, stimuli were divided at ran-
dom into 13 subsets. Thirteen groups of 5 normal-hearing
subjects listened to the pairs of stimuli at a comfortable lis-
tening level. Each pair could be played only once in each pre-
sentation order (AB/BA). The listeners were asked whether
the two speech samples were produced by the same speaker or
by two different speakers. They also reported their confidence
in their response on a 1–5 scale (1 = positive, 5 = wild guess).
They were not told how many speakers were represented in
the trials. The experiment was self-paced, and listeners were
encouraged to take breaks as needed. Total testing time was
less than one hour. For more details about the perceptual and
automatic speaker discrimination experiments, see [17].

3.2. Automatic Speaker Discrimination

An i-vector [23]/PLDA [24] based ASV system was used to
assess machine performance. The i-vector dimension was 600
and it was reduced to 200 after PLDA. The UBM was mod-
eled with 2,048 Gaussian mixtures. The same stimuli pre-
sented to the human listeners were given to the ASV system
to ensure a fair comparison.

Two feature sets were used in the experiments. The
first was composed of mel-frequency cepstral coefficients
(MFCCs) of dimension 20, along with their first derivatives.
Second derivatives were not used because they did not pro-
vide notable performance gains in our preliminary work. The
second feature set was inspired by a psychoacoustic model
of voice quality [13, 14]. In a previous study [15], we tested
the effectiveness of this feature set, after which the set was
modified to better represent speaker identity for ASV [16].
The modified feature set (denoted as VQual2), included F0,
F1, F2, F3, harmonic amplitude differences H1-H2, H2-H4,
H4-H2k, formant amplitudes A1, A2, A3, and cepstral peak
prominence (CPP, [25]). Here, H1, H2, H4, and H2k indicate
the amplitudes of first, second, and fourth harmonics, and the
harmonic nearest to 2 kHz. All features were automatically
extracted without manual refinements.

3.3. Evaluation Metric

For humans, the similarity between the stimuli in each pair
was measured by unfolding the confidence ratings such that
a value of 10 (positive that voices are the same) meant the
voices were very similar, and a value of 1 (positive that voices
are different) meant they were maximally dissimilar. These
scores were averaged across listeners. For ASV systems, the
PLDA score, which represents the ratio of the likelihood that
the given pair of stimuli are from the same speaker to the like-
lihood that the pair is from two different speakers, was used.
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After obtaining the similarity scores from humans and
PLDA scores from each automatic system, the scores were
calibrated using standard logistic regression [26]. The re-
sulting calibrated log-likelihood-ratio (LLR; L) represents the
scalar responses by humans and the automatic systems.

The detection cost function (Cdet), commonly known as
DCF, and the log-likelihood-ratio cost function (Cllr) were
used for performance evaluation [27]. Cdet is defined as the
expected cost of detection errors. It is a measure of discrim-
ination suitable for evaluating application-dependent perfor-
mance. For our application, Cdet was obtained with cost of
misses set at 25 and cost of false alarms set at 1, as the ratio
between target trials and non-target trials.

On the other hand, Cllr is defined as an integral over
a spectrum of operating points of Cdet. Thus, Cllr is an
application-independent measure for evaluating soft deci-
sions. It can be interpreted as a measure of loss of informa-
tion, thus the lower the Cllr, the more the average information
per trial (in bits) increases by applying the system. Cllr has an
analytic solution as shown in [27]:

Cllr(Lt) =
1

2

(∑
t∈tar

log2(1 + e−Lt)

Ntar
+
∑
t∈non

log2(1 + eLt)

Nnon

)

where Lt is the log-likelihood-ratio for trial t; and where ‘tar’
is a set of Ntar target trials and ‘non’ is a set of Nnon non-
target trials. The two normalized summation terms represent
expectations of ‘log costs’ for target trials (first term) and for
non-target trials (second term), respectively.

The Bosaris toolkit [28] was used to calibrate the raw
scores and for calculating Cdet and Cllr. As the data size ana-
lyzed was limited, and as the main purpose of the study was to
analyze calibration-independent performance, the calibration
was trained and used on the same dataset.

3.4. System Fusion

Systems were fused based on the logistic regression method
[29] using the Bosaris toolkit [28]. The fusion trains combi-
nation weights to fuse multiple systems providing a calibrated
set of log-likelihood ratios.

3.5. Speaker-Level Analysis

The L and Cllr values were analyzed on the speaker level. For
each of the 50 speakers, the Lt values for the trials including
that speaker were collected. Then, mean values of Lt for tar-
get and non-target trials were calculated separately, denoted
as Ltar and Lnon, respectively. If Ltar is large for a speaker,
this indicates that the speaker has small within-speaker vari-
ability. Similarly, if Lnon is large for a speaker, it indicates
that the speaker has small between-speaker variability, and it
is difficult for the system to distinguish her from others.

Cllr can be representative of the reliability of the L score.
The lower the Cllr, the more reliable the system responses

are for the speaker. C tar
llr and Cnon

llr , at the speaker level, were
calculated in a similar manner.

4. RESULTS AND DISCUSSION

4.1. Human and Machine Performance

Human and machine performances are summarized in Ta-
ble 1. As expected, humans performed better than machines.
For example, humans’ Cdet was as low as 0.273, while values
for the MFCC-based system and VQual2-based system were
0.500 and 0.682, respectively. Humans performed even better
than fusion of the two automatic systems, which had Cdet =
0.513. In addition, fusing human responses with any auto-
matic system improved performance, consistent with [30].
This trend was preserved with different false alarm costs, and
for the Cllr values.

When fusion improved performance, it suggested com-
plementarity among systems. When the MFCC and VQual2
were fused, the Cnon

llr decreased from 0.739 to 0.721, without
changing C tar

llr . On the other hand, when humans responses
were fused with VQual2, the Cnon

llr was not affected while the
C tar

llr slightly decreased from 0.417 to 0.405. MFCCs provided
more complementary information to human responses than
VQual2 features did; they reduced C tar

llr and Cnon
llr from 0.417

to 0.342 and from 0.434 to 0.368, respectively.
Note that the data set was not split into development and

evaluation sets for fusion, which might have resulted in some
overfitting. In the future, with more data, we will repeat these
experiments to ensure that no overfitting occurs.

4.2. Log-Likelihood-Ratio Analysis

Speaker-level Ltar and Lnon are shown in Fig. 1. For humans,
the target trial distribution had a smaller variance compared
to that of the ASV systems. Additionally, the Ltar and Lnon

distribution for humans were well-separated. This explains
higher human accuracy compared to machines.

Table 1. ASV performance in terms of detection cost func-
tions (Cdet), log-likelihood-ratio cost (Cllr), log-likelihood-
ratio cost for target trials (C tar

llr ), and log-likelihood-ratio cost
for non-target trials (Cnon

llr ). The plus (‘+’) symbol indicates a
fusion between the systems.

Cdet Cllr C tar
llr Cnon

llr

MFCC (M) 0.500 0.737 0.736 0.739
VQual2 (V) 0.682 0.884 0.897 0.872
Human (H) 0.273 0.425 0.417 0.434

M+V 0.513 0.728 0.736 0.721
H+M 0.216 0.355 0.342 0.368
H+V 0.273 0.419 0.405 0.434
H+M+V 0.231 0.353 0.341 0.365
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Fig. 1. Scatterplots of Ltar and Lnon per speaker comparing
MFCC vs humans (left) and VQual2 vs humans (right). Ltars
and Lnons are denoted with discs (‘o’) and crosses (‘x’), re-
spectively. Dots (‘·’) indicate perceptually-marked speakers.

Interestingly, the distributions of human responses were
non-Gaussian and skewed towards correct responses. This
tendency was more evident for the Ltar than Lnon. That is,
humans were more positive when they made “same speaker”
responses than “different speaker” responses.

Next, the correlations between the Lnon for humans and
the two ASV systems were analyzed to understand which
acoustic information was related to human responses (see Ta-
ble 2). Compared to MFCCs, VQual2 had a high correlation
with the human responses for Lnon (r = 0.610). This suggests
that human experts’ decisions based on voice quality infor-
mation could resolve false acceptances by the MFCC-based
system [31]. Interestingly, for the 9 marked speakers, the cor-
relation was even higher (r = 0.912). This might be related
to findings that when linguistic cues are limited in the stimuli,
human listeners assess speaker similarity of non-target pairs
by relying on voice quality [32].

This tendency was not apparent for Ltar. Unfortunately,
because only one target trial per speaker was made in this
experiment, as opposed to 25 for the non-target trials, it is
difficult to analyze what acoustic information was correlated
with human responses for target trials.

4.3. Log-Likelihood-Cost Analysis

In our previous study, it was noted that human performance
degraded when speakers were marked [17]. To analyze the re-
lationship between speaker markedness and system reliability
in terms of the information loss, Cllr values were analyzed.

For humans, the mean C tar
llr among the marked speakers

was 0.784 compared to 0.417 for all speakers. For MFCCs,
it was 0.574 among the marked speakers compared to 0.736
for all speakers. VQual2 showed no significant difference
between the marked speakers and all speakers (0.909 and
0.897). That is, the MFCC system could take advantage

Table 2. Correlation coefficients of Ltar and Lnon per speaker
between each of the two ASV systems (MFCC and VQual2)
and humans.

MFCC VQual2

Ltar 0.127 0.216
Lnon 0.273 0.610

of acoustic information for “same speaker” decisions from
speaker markedness, while humans and VQual2-based sys-
tems could not. Moreover, when selecting the 4 monolin-
gual English speakers among those marked speakers, human
C tar

llr increased to 1.445. Those 4 speakers did not have
non-American accents, but they had unusual dysfluencies in
reading. The other 5 speakers’ Cllr was much lower (0.256).
This suggests that humans were not able to detect a consis-
tent pattern in dysfluencies, but they could detect patterns for
making “same speaker” decisions for the 5 speakers with non-
American dialects. This hypothesis will be tested in future
studies by including more target trials and marked speakers.

5. CONCLUSION

Speaker discrimination decisions by humans and machines
on short-utterance, text-independent stimulus pairs were in-
vestigated. We focused on analyzing system responses and
their reliability. System responses were measured in terms
of the log-likelihood-ratio, and the reliability was calculated
in terms of the log-likelihood-ratio cost function. Target and
non-target trials were analyzed separately.

As expected, human listeners were considerably more ac-
curate than machines. Higher confidence for correct target
decisions compared to correct non-target decision was ob-
served in the human response distribution. For non-target
trials, system responses per speaker were highly correlated
between humans and VQual2, especially when the speaker
is perceptually marked. For target trials, humans response
reliability decreased for marked speakers compared to when
all the speakers were considered. However, MFCC response
reliability was higher for marked speakers than all speakers.
This suggests that MFCCs could extract information from
speaker markedness for target trials, while VQual2 response
reliability was not affected by speaker markedness. These re-
sults are consistent with the prototype model of speaker per-
ception in that human decisions became less accurate with
speaker markedness. Results additionally suggest that ma-
chines might be able to supplement human listeners in such
conditions.

Future studies will include perception experiments with
more target trials, as well as more marked speakers. In ad-
dition, male speakers will be studied for a gender-balanced
analysis, and more detailed comparisons will be conducted
with machines using other spectral and prosodic features.
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