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ABSTRACT

Deep neural network based speaker embeddings have attracted much
attention in text-independent speaker verification task. In addition to
the network architecture, an appropriate design of the loss function
is crucial for the deep discriminative embedding extractor. Inspired
by the success of Large Margin Cosine Loss (LMCL) in face recog-
nition, we propose an enhanced LMCL named boundary discrimina-
tive LMCL (BD-LMCL) to emphasize the discriminative informa-
tion inherited in the speaker boundaries. Unlike LMCL, where all
training samples contribute equally for the objective function, only
the samples around the speaker boundaries are considered during the
network training with BD-LMCL. Specifically, those samples close
to the boundaries are dynamically selected using top-k zero-one loss.
Experimental results on a short duration corpus Android Cellphone
and NIST SRE 2012 demonstrate better performance compared to
LMCL and other popular loss functions.

Index Terms— speaker embedding, loss function, boundary,
top-k loss, speaker verification

1. INTRODUCTION

Text-independent speaker verification is a challenging task in the p-
resence of a large number of ambiguous speakers. The speaker infor-
mation should be extracted from the complex speech data, especially
for an unseen speaker. I-vector/PLDA framework [1, 2, 3] is a well
known state-of-the-art solution to this task. Although this framework
performs well when long utterances are available, it suffers perfor-
mance degradation in presence of short utterances.

Recently, speaker embedding based systems have shown signif-
icant performance improvement for short-duration speaker verifica-
tion compared to the i-vector system. In [4], the speaker embeddings
referred to as d-vector were created by averaging bottle-neck layer
activations of a feed-forward DNN which was trained to classify s-
peakers at the frame-level. Work in [5, 6] also exhibits better perfor-
mance compared to i-vector/PLDA framework for short utterances
by training a deep CNN similar to VGG net with softmax loss. To
handle utterances with arbitrary duration, [7, 8] proposed to extract
utterance-level speaker embeddings using a statistics pooling layer
to aggregate the frame-level inputs for a time-delay neural network
(TDNN) [9] based architecture. The resulting speaker embeddings
called x-vectors followed by probability linear discriminant analysis
(PLDA) [3] backend demonstrate promising performance for utter-
ances with variant duration.

The discriminating power of feature representation is crucial
for speaker verification system, and a robust embedding extractor
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should be effective in minimizing intra-speaker variation and maxi-
mizing inter-speaker discrepancy. However, the embedding extrac-
tor with traditional softmax loss usually overfits to corpus-specific
speech, resulting in speaker embeddings with insufficient discrimi-
nating power for verification. To address this issue, triplet loss was
introduced to speaker verification in [10, 11]. However, such loss
function requires thoroughly scheming the mining of triplet sam-
ples, which is an extremely time-consuming procedure. The work in
[12] employed center loss to reduce the intra-speaker variation in the
Euclidean space. The center loss, however, ignores the inter-speaker
variances, which may result in suboptimal solutions. More particu-
larly, angular softmax (A-softmax) loss [13, 14, 15] and LMCL [16]
project the features from Euclidean space to an angular space, and
introduce an angular margin or a cosine margin term to maximize
the decision margin. Since all the training samples share the same
margin in A-softmax and LMCL, both of the two methods are sensi-
tive to the initial margin, if the initial margin is too large, the network
will be hard to converge and tend to be instable, otherwise, a small
margin will limited the performance improvement compared to the
softmax loss.

To address this issue, we propose an enhanced LMCL referred as
boundary discriminative LMCL (BD-LMCL) for text-independent
speaker verification in this paper. Our motivation is based on the as-
sumption that the training samples far away from the corresponding
speaker boundaries have little contribution to the decision boundary,
while those samples around the speaker boundaries are crucial for
modelling the classification boundary. We therefore pay more atten-
tion to the training samples near the speaker boundaries in the angu-
lar space. Specifically, for each training speaker in a mini-batch, we
use the top-k zero-one loss [17] to dynamically sample some training
samples around the corresponding speaker boundary in the angular
space for computing the standard LMCL. In other words, for the
training samples which are easy to classify, we will not further intro-
duce an extra margin to the classification boundary in BD-LMCL,
but a cosine margin will be introduced for the hard samples to max-
imize the decision margin in the cosine space. Compared to LMCL,
BD-LMCL can accelerate the convergence in the training stage and
better model the discriminative information inherited in the speaker
boundaries. Experiments on a short duration corpus Android Cell-
phone and NIST SRE 2012 show that Inception-ResNet architecture
[18] with the proposed BD-LMCL outperforms other baseline meth-
ods.

The rest of this paper is organized as follows: Section 2 de-
scribes the large margin cosine loss. Section 3 presents the proposed
boundary discriminative large margin cosine loss in detail. Section 4
presents the experimental setup and the analysis of the results. The
conclusions are finally made in Section 5.
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2. RELATED WORK

Speaker verification shares many properties with the face recogni-
tion task. In the face recognition community, a deep neural network
classifier trained with a regularized strategy is also usually used as
a deep discriminative embedding extractor. However, researchers
found that the traditional softmax loss lacked the power of discrim-
ination. Recently, several loss functions such as triplet loss, cen-
ter loss, and angular softmax loss have been proposed to address
this problem. All these improved losses share a common idea for
improving discrimination capability: maximizing inter-class vari-
ance and minimizing intra-class variance. More recently, Wang et
al.[16] proposed the LMCL to further maximize the decision margin
in the angular space. Specifically, the softmax loss was reformu-
lated as a cosine loss by L2 normalizing of both the features and
the weight vectors to remove radial variations, then a cosine mar-
gin term m was introduced between different classes to improve the
cosine-related discriminative information. The motivation is that the
posterior probability of the ground-truth class should be larger than
a decision term. After normalizing the weight vectors W and the
feature vector x to remove radial variations, the posterior probability
merely relies on cos(θi), where θi is the angle between the feature
vector and the weight vector related to class i. And by fixing the L2
normalization of ‖x‖ to a constant value, the cos(θi) − m is then
fed to the softmax layer with cross entropy loss function. Finally,
the LMCL loss function becomes:

Llmc = −
1

N

N∑
i=1

log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑
r 6=yi e

s(cos(θr,i))
(1)

subject to

cos(θyi,i) =
WT
yixi

‖Wyi‖ ‖xi‖
(2)

where N is the number of training samples, xi denotes the i-th em-
bedding from the ground-truth class yi. Them > 0 is a fixed margin
that controls the magnitude of the cosine margin. The Wyi is the
weight vector of class yi, and θyi,i is the angle between xi and the
yi-th column of the weights W. The constant s is a scaling hyper-
parameter.

3. BOUNDARY DISCRIMINATIVE LARGE MARGIN
COSINE LOSS

When the network is trained using LMCL, all training samples share
a common margin and contribute equally to the loss function. How-
ever, the fact may be that when the feature vectors extracted from
the corresponding training samples are far away from the speaker
boundaries in the angular space, they will have little contribution to
the decision boundary. While the feature vectors around the speaker
boundaries are significant for modeling the discriminative informa-
tion inherited in classification boundaries. Hence, it is reasonable to
pay more attention to the features vectors near the speaker bound-
aries in the angular space. We introduce a weight function ω to each
training sample. In term of formula, the proposed boundary discrim-
inative large margin cosine loss can be defined as:

Lbd−lmc = −
1

N

P∑
p=1

n∑
j=1

log
es(cosθp,j−ω(p,j)m)

Z
(3)

Z = es(cosθp,j−ω(p,j)m) +
∑
r 6=p

es(cosθr,j) (4)
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Fig. 1. Decision boundaries learned by BD-LMCL. Distinct color
areas represent feature space from distinct speakers. Note that the
metrics in the figure do not represent real distances. The real dis-
tance is cos(θi), and we use the angle as the distance for a better
geometrical interpretation. The analysis is detailed in Section 3.

subject to

cosθp,j =
WT
p xj

‖Wp‖ ‖xj‖
(5)

where P is the number of training speakers in a mini-batch, each
speaker has n training utterances, xj is the j-th feature vector from
speaker p, and r represents some other speaker.

When the weight function ω(p, j) is constantly equal to 1, the
Eq.(3) becomes the standard LMCL. In order to select the feature
vectors away from the speaker boundaries dynamically, the values
of {cosθp,j , j = 1, ..., n} should be used as an important reference
for selecting feature vectors which are hard to classify. A larger θp,j
indicates that the xj is closer to the boundaries corresponding to its
ground-truth speaker p. Specifically, we sort a set of {cosθp,j , j =
1, ..., n} in descend order.

cosθp,n > ... > cosθp,j > ... > cosθp,1 (6)

And then we introduce a hyper-parameter k to denote how many
feature vectors from each speaker are considered to be far from the
speaker boundaries. Other (n− k) feature vectors are considered to
be around the speaker boundaries. We use [.] as a logical operator.
For an expression E, if E is true, then [E] = 1, otherwise [E] = 0.
Given a fixed k and speaker p, the top-k zero-one loss is defined as:

errk(p, j) = [cosθp,n−k > cosθp,j ] , j = 1, ..., n (7)

the range of integer k is 0 6 k < n. Note that for k = 0, the
errk(p, j) will become 1 for all feature vectors from the p-th speak-
er. Finally, in each training iteration, a dynamic margin is introduced
by defining the weight function as:

ω(p, j) = errk(p, j) (8)

Fig. 1 illustrates the process of learning decision boundary. As
shown in the figure, the embeddings near the speaker boundaries are
emphasized during the training stage.

4. EXPERIMENTS AND RESULTS

The experiments were conducted on two corpora: Android cellphone
and NIST SRE 2012 [19]. We used equal error rate (EER) and min-
imum decision cost function (minDCF) defined in NIST 2012 SRE
to evaluate the performance of different systems on NIST SRE 2012.
For the experiments on Android Cellphone, only EER was used as
the evaluation metric.

6322



Table 1. Architecture of the modified Inception-ResNet-v1. The out-
put size of each module is the input size of the next one. V denotes
‘Valid’ padding.

type patch size/stride
or remarks input size

Conv 1 3×1/1×1 V 150×40×1
Conv 2 3×3/1×1 V 148×40×32
Conv 3 3×3/1×1 146×38×32

MaxPool 3×3/2×2 V 146×38×64
Conv 4 1×1/1×1 V 72×18×64
Conv 5 3×3/1×1 V 72×16×80

5×Inception-ResNet-A - 70×16×192
Reduction-A - 70×16×192

10×Inception-ResNet-B - 34×7×832
Reduction-B - 34×7×832

5×Inception-ResNet-C - 16×3×1728
Average Pooling 16×3×1 16×3×1728
Fully Connected 1728×500 1×1728

Dropout (keep 0.5) - 1×500
Loss - 1×500

4.1. Speech Data and Front-end Processing

• Android Cellphone: Collected by Android Cellphones, most
utterances in this corpus are short with average duration of
2.6s. The training set contains 2,000 Chinese speakers, and
each speaker has 300 utterances. In the evaluation set, al-
l utterances come from 500 speakers. For each speaker, 3
utterances were sampled as the enrollment data. Except the
enrollment data, we sampled 25 utterances from each speak-
er and 800 utterances from other speakers, which resulted in
12,500 target trials and 400,000 imposter trials in total.

• NIST SRE 2012: The training set includes the Switchboard
(SWBD) and NIST Speaker Recognition Evaluations (SREs)
corpus. The SWBD corpus consists of SWBD 2 Phase 1, 2
and 3, and SWBD Cellular 1 and 2. The SREs consists of
2004, 2005, 2006, 2008 and 2010. We excluded speakers
with fewer than 8 utterances and discarded the utterances
less than 5 seconds. To keep the gender balance, 2,000 male
speakers and 2000 female speakers were sampled randomly.
We also made the data augmentation for the selected training
speakers with RIRS NOISES and MUSAN corpora [20, 21].
The augmentation data together with the original clean train-
ing data–including 4,000 speakers and 193,665 utterances
in total–were used for training universal background model
(UBM), total variability matrix, deep neural networks and
PLDA model. We evaluated the system performance on the
core condition 4 of NIST 2012 SRE (core set), male speaker.

For each speech utterance, a voice activity detection (VAD) al-
gorithm was applied to detect the silence frames. Then the voice-
active regions were extracted and segmented into 25ms Hamming
windowed frames with 10ms frame-shift. For i-vector baseline sys-
tem, the first 19 Mel frequency cepstral coefficients (MFCC) with
log energy were calculated with their first and second derivatives
to form a 60-dimensional acoustic vector, followed by cepstral mean
normalization (CMN). For the neural network systems, the input fea-
tures were 40-dimensional log mel-filter bank features.

Table 2. Performance of i-vector based system, different loss func-
tion based systems on Android cellphones, in terms of EER(%).

Method Cosine Similarity PLDA
1.5s 3s full 1.5s 3s full

i-vector 9.10 8.25 7.95 7.43 6.54 5.38
Softmax Loss 4.46 3.96 4.02 4.87 4.44 4.42
Triplet Loss 3.61 2.86 2.86 3.25 2.47 2.56
Center Loss 2.18 1.45 1.44 2.77 1.95 1.87
A-Softmax 1.89 1.29 1.27 2.16 1.62 1.59

LMCL 1.82 1.23 1.17 1.97 1.45 1.37
Proposed 1.60 1.09 1.07 1.82 1.34 1.29

Table 3. Performance of the proposed method with varying ratio
of k/n in terms of EER(%) on Android cellphone, cosine similarity
was used as the scoring back-end, the duration of the test utterances
was fixed to 1.5s.

k/n 10% 30% 50% 70% 90%
EER 1.83 1.67 1.60 1.68 1.88

4.2. I-vector Baseline

The i-vectors were extracted based on a gender-independent UBM
with 1,024 Gaussian components and a total variability matrix with
500 total factors. We applied within-class covariance normalization
(WCCN) and length normalization (LN) to the 500-dimensional i-
vectors. Then linear discriminant analysis (LDA) was used to reduce
the dimension of i-vectors to 200. And the PLDA models with 150
latent identity factors were trained.

4.3. Deep Speaker Embedding Systems

According to the characteristics of input speech, a modified version
of Inception-ResNet-v1 [12, 18] was employed as our deep embed-
ding extractor in our experiments. The architecture of the network is
shown in Table 1. As the utterances of Android Cellphone are short,
we extracted a segment of 150 frames from each training utterance
after VAD as the input of the network. For NIST SRE corpus, all
long training utterances were divided into multiple 150-frame seg-
ments by employing a sliding-window without overlap. RMSProp
optimizer with an initial learning rate of 0.1 was employed for train-
ing all the networks with different loss functions. The learning rate
was decayed based on the validation set performance. We employed
dropout and L2 regularization to reduce overfitting and used batch
normalization to accelerate the training process. The batch size was
set to 128. Given the trained network, the 500-dimensional embed-
dings of the enrollment and test utterances were extracted from the
fully-connected layer. Then the utterance-level speaker embeddings
were obtained by performing average pooling along the time axis.

4.4. Results and Analysis

In this section, we compared the performance of the proposed BD-
LMCL with the i-vector system and five other popular loss func-
tions, including the softmax loss, the triplet loss, the center loss, the
A-softmax and the standard LMCL. All of the loss functions were
evaluated based on the same modified Inception-ResNet-v1 architec-
ture. Cosine similarity and PLDA were used as the back-ends for all
systems.
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Table 4. Performance of i-vector based system, different loss function based systems in terms of EER (%) and minDCF on CC4 of NIST
2012 SRE (core set), male speaker.

Method
EER minDCF

Cosine Similarity PLDA Cosine Similarity PLDA
6s 30s full 6s 30s full 6s 30s full 6s 30s full

i-vector 19.08 14.29 12.28 12.06 6.13 3.36 0.935 0.868 0.839 0.777 0.421 0.280
Softmax Loss 16.28 9.20 4.79 12.78 6.30 3.52 0.967 0.656 0.463 0.949 0.521 0.337
Triplet Loss 15.40 8.61 4.39 12.24 5.99 3.31 0.955 0.625 0.420 0.928 0.503 0.320
Center Loss 14.87 8.15 3.97 11.80 5.77 3.18 0.934 0.590 0.376 0.907 0.491 0.312
A-Softmax 14.24 7.83 3.56 11.61 5.12 3.05 0.917 0.569 0.338 0.820 0.426 0.296

LMCL 13.97 7.65 3.49 11.50 5.05 3.01 0.927 0.566 0.328 0.817 0.422 0.296
Proposed 13.65 7.37 3.41 11.38 4.90 2.74 0.923 0.556 0.324 0.822 0.420 0.290

4.4.1. Performance of Different Systems on Android Cellphone

Table 2 presents the performance of different systems on differen-
t duration conditions for the test utterances, i.e., 1.5s, 3s and full.
For enrollment, 1.5s segments were extracted from the enrollment
speech after VAD in all experiments. The margin and scale parame-
ters in LMCL were set to 0.35 and 30 respectively, the angular mar-
gin term in A-Softmax was set to 4, and α and λ in center loss were
set to 0.2 and 0.001 respectively in the following experiments. Hard
trial selection strategy was adopted in triplet loss.

Results in Table 2 show that the deep speaker embedding based
systems outperform the i-vector system for short utterances. The
proposed BD-LMCL demonstrates better performance compared to
other loss functions on different duration conditions. Specially, for
the duration condition of 1.5s, the EER of the BD-LMCL achieves
82.42% and 12.09% relative improvement over the i-vector system
and standard LMCL respectively when cosine similarity is used as
the back-end. Compared to the softmax loss, we can see that the
performance of the other loss functions is much better. We also find
that except for the triplet loss, the performance of other loss func-
tions degrades when PLDA back-end is employed.

In BD-LMCL function, the value of k/n denotes the ratio be-
tween the amount of the discarded training samples and the total
amount of training data. If k/n is 0, the proposed BD-LMCL will
be equal to the standard LMCL. To further investigate the perfor-
mance of the proposed BD-LMCL, we changed the ratio from 10%
to 90%. The corresponding results are presented in Table 3. When
the ratio is set to 10%, the performance of BD-LMCL is close to the
standard LMCL. The reason is that almost all training samples are
subtracted by the margin, leading to a sub-optimal decision bound-
ary. The best result is obtained when half of training samples are
used to compute the loss.

4.4.2. Performance of Different Systems on NIST SRE 2012

For the experiments on NIST SRE 2012, we set the ratio k/n to 50%
for our proposed BD-LMCL, the parameters of other loss functions
were kept the same as for those experiments on Android cellphones.
The full-length utterances were used for enrollment, and the per-
formance of different systems were evaluated on different duration
conditions for the test utterances, including 6s, 30s and full length.

From Table 4, we can see that the proposed method achieves the
best performance compared to other systems under almost all condi-
tions. Compared to the above experiments, the deep embedding sys-
tems achieve performance improvement when PLDA is employed
as the back-end. A possible reason may be that there are sufficient
training utterances for training the PLDA model in the experiments
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Fig. 2. The DET curves of the proposed BD-LMCL and other loss
functions based systems for male speakers on CC4 of NIST SRE
2012 (core set).

on NIST SRE 2012. Results also indicate that our proposed method
can achieve better performance compared to i-vector/PLDA system
when long utterances are available.

Fig. 2 shows the DET curves of different loss function based
embedding systems. Again, the proposed BD-LMCL based system
performs the best at most of the operating points.

5. CONCLUSION

In this paper, we proposed an enhanced LMCL named boundary dis-
criminative LMCL (BD-LMCL) to emphasize the discriminative in-
formation inherited in the speaker boundaries. BD-LMCL was used
to guide deep Inception-ResNet CNN to learn highly discriminative
speaker embeddings. To demonstrate the effectiveness of the pro-
posed method, extensive experiments were conducted on two corpo-
ra. Compared to i-vector/PLDA system and other popular loss func-
tion based systems, the proposed BD-LMCL method achieves the
best performance. We wish that our explorations on learning deep
discriminative speaker embeddings with BD-LMCL will benefit the
text-independent speaker verification task.
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