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ABSTRACT

To extract high speaker-sensitive embeddings from deep neu-
ral networks is still a challenge in the field of speaker recogni-
tion. This paper proposes a novel network that learns speaker
embeddings from multiple temporal scales. This idea comes
from the recent biological research that the human auditory
system has a mechanism of fusing multi-timescale informa-
tion together to encode sound information. A two-pathway
neural network is presented, in which one pathway focuses on
short-time (or local) traits and the other focuses on long-range
(or global) scale. Both traits are fused into one feature vec-
tor and the utterance-level speaker embeddings are extracted
from these features. Experimental results show that differ-
ent timescale traits can complement each other. And their fu-
sion, which refer to as t-vector, outperforms i-vector and other
deep embeddings. Moreover, with the end-to-end training, t-
vectors can obtain excellent performance even using simple
scoring approach like cosine distance.

Index Terms— speaker recognition, speaker embedding,
biological research, different timescales, t-vector, end-to-end

1. INTRODUCTION

The factor analysis methods[1, 2] have been the state-of-the-
art speaker representation learning method in the last decades.
Using phonetic-discriminative deep neural networks (DNNs)
in place of Gaussian mixture model (GMM)[3] to extract
Baum-Welch statistics[4, 5] has made considerable progress
in some situations. In recent, it has become a hot research
topic to learn efficient and sensitive speaker embeddings us-
ing speaker-discriminative DNNs. The d-vectors, which are
first proposed in [6], are extracted from the last hidden layer to
replace i-vectors but they get suboptimal performance. Since
then, many related works are proposed to improve perfor-
mance. There are kinds of neural networks[7, 8, 9, 10, 11, 12]
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and some with end-to-end loss functions[13, 14, 15] that show
advantages on text dependent or independent tasks. These re-
sults confirm that speaker embeddings extracted from DNN
outperform i-vectors on short duration utterances.

Studies mentioned above do not reveal the auditory pro-
cessing mechanism in human brains, which is proved in the
newest biological research[16] that the human auditory sys-
tem employs at least a 2-timescale processing mode. This
motivates us to learn speaker embeddings from multiple tem-
poral scales. Inspiration also comes from[17], in which the
authors present a Two-Pathway Generative Adversarial Net-
work (TP-GAN) for photorealistic frontal view synthesis.
The generator of this TP-GAN contains two pathways, one
for global transformation processing and the other for local
landmarks. In this work, we also propose a two-pathway
neural network model to simulate the human auditory sys-
tem. This model is constructed with paired global-focused
and local-focused pathways together to learn distinct percep-
tual traits of sound, as the paired short and long timescales
employed by our brains. Then speaker embeddings are de-
rived by averaging frame-level feature vectors, which are
fused from perceptual traits of each pathway. The proposed
embeddings (or t-vectors) are also set as input samples for
the triplet-loss scheme, in order to study the performance
of these embeddings in an end-to-end system. Experiments
show that t-vectors contain more speaker characteristics and
the end-to-end training makes them more speaker sensitive.

2. TWO-PATHWAY NEURAL NETWORK

2.1. Network Architecture

This work focuses on the effect of multiple learning timescales,
which are represented by different learning window sizes in-
stead of different speech lengths. Therefore in this model, two
timescale pathways are designed to learn different perceptual
traits from the same speech. One of them is the local percep-
tual learning pathway, which is designed to simulate the short
timescale processing mode, focusing on correlations inside
the local field. The other is the global perceptual learning
pathway, which is designed to simulate the long timescale,
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Fig. 1. Structure of the two-pathway neural network. The green blocks indicate convolution kernel windows and filter channels.
The light blue lines indicate fully-connected linear layers.

aiming at representing correlations among entire features.
Because of the two timescales interaction in our brains, dif-
ferent perceptual traits are supposed to play different roles on
recognition decisions. Therefore both global and local traits
are fused into one feature vector. In this paper, outputs from
two pathways are called “traits” to prevent the confusion of
“features”, which “features” represents the fusion of “traits”.

The architecture of the proposed two-pathway neural net-
work model is shown in Fig.1. This model is split into two
parts by the red line. The upper part, which is marked as
“L”, represents the local perceptual learning pathway. It is
consisted of a CNN with the VGG-style[18]. It involves 4
convolution layers. And every two of them are followed by
a max-pooling layer. Outputs from the last convolution layer
are projected to a bottleneck layer to extract the local per-
ceptual traits. In this pathway, small convolution window is
regarded as the short timescale.

The lower part, which is marked as “G”, represents the
global perceptual learning pathway. In this pathway, two
kinds of architectures are considered at first. One is the same
as “L” but with a larger window size, which represents the
long timescale. The alternative one is a fully-connected DNN
that learns correlations from all input dimensions. For the
first one, using a convolution window covering entire fea-
tures will make the rest network equivalent to the second one.
Ultimately the second one is adopted and the effectiveness
is proved in the experiment part. This DNN has seven hid-
den layers, corresponding to six convolution layers and the
last bottleneck layer in “L”. The last bottleneck layer in this
pathway is designed to produce global perceptual traits.

The feature producing part aims at simulating the encod-
ing mechanism that integrates different timescales into one
representation. The “Two-Pathway speaker feature” layer re-
ceives the concatenations of global and local traits as input
and projects them into discriminative feature vectors.

2.2. Classifier Model

The softmax network with cross-entropy loss is first applied to
this model. When this model is well trained, the last softmax
layer is discarded and the speaker embeddings are extracted
from the “Two-Pathway speaker feature” layer. These embed-
dings will replace of i-vectors for backend models scoring.

Then deep embeddings extracted above are set as input to
end-to-end training. In this paper, we take the widely applied
triplet-loss function[19, 20] to verify the effectiveness of these
embeddings in end-to-end system . Triplet-loss function aims
at minimizing the distance between embeddings of the same
speaker and maximizeing the distance of different speakers.
In its training process, a triplet τ = (xτa, x

τ
p , x

τ
n) is selected as

input. Samples in this triplet are called anchor, positive and
negative embeddings. The anchor and positive are selected
from the same speaker while the anchor and negative are not.
This loss can achieve a better separation between positive and
negative samples by adding a margin coefficient α. For any
triplet, the training goal is L(τ) + α < 0 and L(τ) is defined
as follow:

L(xτa, x
τ
p , x

τ
n) =

∥∥f(xτa)− f(xτp)∥∥22 − ‖f(xτa)− f(xτn)‖22
(1)

where ‖∗‖22 is the Euclidean norm and f is the embedding
extracted from the network. In this paper, α is set to 0.2.

3. BASELINE SYSTEM

3.1. I-Vector

The i-vector is a compact representation of the speech utter-
ance, containing both the speaker and channel characteristics.
The i-vector extractor projects high dimensional statistic fea-
tures onto a total variability space T to form fixed-length low
dimensional embeddings. It is defined as:

M = m+ Tω (2)
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where M is the GMM supervector and m is the mean super-
vector of the training data, ω is the so-called i-vector.

3.2. Deep Embedding

In order to compare with the t-vector, two baseline deep em-
bedding systems are built from two subparts of the proposed
model. Speaker embeddings produced by “L”, which is con-
sisted of CNN, are represented as the c-vectors. Because of
the network in “G” is simplified to the fully-connected DNN,
speaker embeddings are represented as the d-vectors. The d-
vector has shown advantages on text-dependent tasks in [20].
However that work is done only on female data and they get
worse d-vector baseline than i-vector. In this paper, we take
the similar d-vector network with more speakers.

For each of these deep embedding baselines training, in
order to prevent the interaction of the other pathway, one path-
way is temporarily discarded and the other is maintained to
construct the system. Actually in our entire model training
process, well trained baseline models of each pathway are
adopted as the pre-trained models, then the entire model is
fine-tuned to produce t-vectors.

In addition to cosine distance, PLDA[21] is also trained
as backend classifier. Some studies noted that PLDA may
not fit well to d-vectors[8], so results of linear discriminant
analysis (LDA) are also employed. All embeddings are length
normalized[22] prior to these approaches.

4. EXPERIMENTS

4.1. Database

Experiments are conducted on the Part3 of RSR2015 text-
dependent database[23]. In this portion, speakers are prompted
with random sequences of digits. Sequences from enrollment
sessions have ten-digit content and sequences from test ses-
sions have five random digits. This database is divided into
background (bkg), development (dev) and evaluation (eval)
subsets. Bkg and dev subsets are used for neural networks,
PLDA and LDA training, while the data used for the i-vector
extractor and UBM model are merged from Switchboard,
Fisher and NIST SRE 2004-2008 databases as the valid data
is lack for the i-vector extractor training only on digits. The
standard eval trials are used for experiments. Sequences in
RSR2015 database are down-sampled to 8kHz to match other
databases. And in this paper, female and male speakers are
merged together to make gender-independent experiments.

4.2. System Settings

Acoustic cepstral features are estimated by a 20 ms window
with the 10 ms shift. The 60-dimensional MFCC feature vec-
tor consists of 19 cepstral coefficients and the log energy,
along with their first and second derivations. These features

are used for the i-vector system and network input. A gender-
independent UBM model is composed of 1024 Gaussian com-
ponents and the dimensionality of the total variability space
is set to 400. The i-vector is projected to a 150-dimensional
vector by the LDA using kaldi toolkit[24].

For network input, a symmetric 5-frames window con-
structed 11 frames are used. One-stride shift across the time
and frequency and zero-padding are adopted for convolution
network. Batch normalization is applied to improve the train-
ing convergence. For “G”, neurons in the first six hidden lay-
ers are 1024, corresponding to the UBM components. Traits
from the bottleneck layer with 512 neurons in each pathway
are concatenated to a 1024-dimensional vector. Then they are
projected into the deep feature layer, whose neurons are 400
to match the i-vector dimensionality. The softmax non-linear
layer has 194 neurons, corresponding to speakers in the train-
ing set. ReLU activation function is employed by all hidden
layers. The Adam optimizer is employed with the learning
rate set to 0.001 and batch size set to 512. For the end-to-end
system, learning rate is set to 0.0001 in case of overfitting and
the offline sampling approach[25] is adopted for triplets.

4.3. Experimental Results

The performance of t-vector system compared with the base-
line systems is shown in this section. The results are pre-
sented in terms of equal error rate (EER). In this paper, we just
show the effect of learning embeddings from two timescales,
so complicated networks are not involved.

Table 1. EER Results with Different Backend Classifiers
Systems Cosine(%) PLDA(%) LDA(%)
i-vector 17.83 9.26 7.13
c-vector 16.98 10.12 7.42
d-vector 9.15 8.64 6.59
t-vector 8.98 8.02 5.84

As is shown in Table.1, it can be observed that both PLDA
and LDA efficiently improve performance. The best perfor-
mance obtained by LDA suggests that it is still effective to
make good use of the intra- and inter-class information for
deep embeddings. The d-vector system obtains performance
improvements on the i-vector system while the c-vector sys-
tem does not. A possible reason for this is that the MFCC
features are suboptimal for CNN learning. We keep this in-
put for all networks because this work tends to learn infor-
mation from multiple timescales rather than kinds of features.
Compared with the i-vector system, the t-vector system ex-
cellently improves performance. It achieves relative improve-
ments of 13.4% and 19.4% for EER using PLDA and LDA
respectively. Even fused with a suboptimal trait, the t-vector
still obtains relative gains of 7.2% and 11.4% for EER com-
pared with the d-vector. This improvement is credible since
we get a better baseline than other studies[20].
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In this part, the effect of different timescale combinations
are discussed. 3 convolution windows are selected, includ-
ing 3×3, 5×5 and 7×7. DNN with 2048 hidden neurons
is also experimented to show the effect of large parameters.
The results using LDA are shown in Table.2. In these paired
timescales, the smaller one is adopted as “L” and the larger is
adopted as “G”. From the results, we can find that the larger
convolution window is adopted, the better performance is
obtained for the single pathway. When the smallest convolu-
tion window is adopted as “L”, fusing with a large window
obtains better performance than c-vector but worse than the
larger window. It suggests that simplely fusing traits of two
timescales can not get ideal performance. On the other hand,
when DNN is adopted as “G”, fusing with a short timescale
obtains better performance, but a larger convolution window
leads to a worse performance. These results confirm that
fusing the local and global traits efficiently strengthen the
embeddings discriminative. And the shortest and longest
timescales complement each other best, because of the mini-
mum overlapped correlations learned from features.

Table 2. Results of different timescale combinations
Systems L-Pathway G-Pathway EER(%)
i-vector – – 7.13
d-vector – 1024 DNN 6.59

– – 2048 DNN 6.75
– 7×7 1024 DNN 6.51
– 5×5 1024 DNN 6.32
– 7×7 – 6.67
– 5×5 – 6.90

c-vector 3×3 – 7.42
– 3×3 5×5 6.97
– 3×3 7×7 6.85

t-vector 3×3 1024 DNN 5.84

We also noted that this model is somehow like a fea-
ture fusion. However, the proposed embeddings should have
their unique identified characteristics after traits fusing by
the “two-pathway speaker feature” layer. Therefore, fusion
results of the score domain are presented here. From the
LDA results in Table.3, we can observe that the t-vector is
still complementary to other traits. The fusion of t-vector
and both two traits not only obtains improvements of 17.8%
for EER compared with the single t-vector system, but also
outperforms the fusion of these two traits by 9.4%.

To study the performance of embeddings in an end-to-
end system, the triplet-loss is applied for t-vectors. And we

Table 3. Results of embedding fusions
Fusion Vectors c & d c & t d & t c & d & t

EER(%) 5.30 5.28 5.12 4.80

use t-SNE[26] to draw embedding samples from 10 random
selected speakers, intending to show the impact of different
training approaches. From the Fig.2, it can be observed that
embeddings extracted from the end-to-end training have high
discriminative than from the conventional approach. Embed-
dings from the same speakers gather more closely while those
from different speakers distinguish more clearly.

(a) Cross-Entropy Training (b) End-to-End Training

Fig. 2. T-SNE visualization of embeddings learned from dif-
ferent training approaches. Each color represents a speaker.

There are still sequences not well distinguished in Fig.2,
so backend models should also play a role. These results are
presented in Table.4. The LDA performance comfirms that it
is effective to utilize the intra- and inter-class variations even
for embeddings extracted from end-to-end system. It reduces
the EER by 7.9% than original t-vectors. The impact of end-
to-end training is shown by the cosine distance result that t-
vectors are able to directly get excellent performance without
other backend classifiers. It obtains improvement of 26% for
EER compared with t-vectors training conventionally, and it
even outperforms PLDA backend of 13%.

Table 4. T-Vector Results with Different Training Method
Methods Cosine(%) PLDA(%) LDA(%)

Cross-Entropy 8.98 8.02 5.84
End-to-End 6.65 7.64 5.38

5. CONCLUSION

In this paper, we present a novel two-pathway neural network
to extract deep speaker embeddings. These embeddings are
fused from two sub-traits, which represent the information
learned by short-time (or local) and long-scale (or global)
processing modes in the human auditory system. Experiments
are conducted to verify the proper timescale combinations and
the results confirm that traits learned from different tempo-
ral scales are complementary and embeddings (or t-vectors)
extracted from the best timescale combination achieve better
performance than other representations. Then triplet-loss is
used to show the impact of end-to-end learning for t-vectors
and finally more speaker-sensitive embeddings are produced.

6314



6. REFERENCES

[1] N. Dehak, P. Kenny, R. Dehak, P. Ouellet, and P. Du-
mouchel, “Front end factor analysis for speaker veri-
fication,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 19, no. 4, pp. 788–798, May 2011.

[2] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel,
“Joint factor analysis versus eigenchannels in speaker
recognition,” IEEE Trans. Audio, Speech, Lang. Pro-
cess., vol. 15, no. 4, pp. 1435–1447, 2007.

[3] D.A. Reynolds, T.F. Quatieri, and R.B. Dunn, “Speaker
verification using adapted gaussian mixture models,”
Digital signal processing, vol. 10, no. 1, pp. 19–41,
2000.

[4] P. Kenny, V.Gupta, T. Stafylakis, P. Ouellet, and
J. Alam, “Deep neural networks for extracting baum-
welch statistics for speaker recognition,” in Proc. IEEE
Odyssey, 2014, pp. 293–298.

[5] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel
scheme for speaker recognition using a phonetically-
aware deep neural network,” in Proc. ICASSP, 2014,
pp. 1714–1718.

[6] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and
J. Gonzalez-Dominguez, “Deep neural networks for
small footprint text-dependent speaker verification,” in
Proc. ICASSP, 2014, vol. 28, pp. 357–366.

[7] F.A.R.R Chowdhury, Q. Wang, I.L. Moreno, and
L. Wan, “Attention-based models for text-dependent
speaker verification,” in Proc. ICASSP, 2018.

[8] L. Li, Y. Chen, Y. Shi, Z. Tang, and D. Wang, “Deep
speaker feature learning for text-independent speaker
verification,” in Proc. Interspeech, 2017, pp. 1542–
1546.

[9] Sergey S. Novoselov, O. Kudashev, V. Schemelinin,
I. Kremnev, and G. Lavrentyeva, “Deep cnn based fea-
ture extractor for text-prompted speaker recognition,” in
Proc. ICASSP, 2018.

[10] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khu-
danpur, “Deep neural network embeddings for text-
independent speaker verification,” in Proc. Interspeech,
2017, pp. 999–1003.

[11] Y. Liu, Y. Qian, N. Chen, T. Fu, Y. Zhang, and K. Yu,
“Deep feature for text-dependent speaker verification,”
Speech Communication, vol. 73, pp. 1–13, 2015.

[12] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and
S. Khudanpur, “X-vectors: robust dnn embeddings for
speaker recognition,” in Proc. ICASSP, 2018.

[13] S. Zhang, Z. Chen, Y. Zhao, J. L, and Y. G, “End-to-end
attention based text-dependent speaker verification,” in
Proc. IEEE SLT Workshop, 2016, pp. 171–178.

[14] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer,
“End-to-end text-dependent speaker verificaiton,” in
Proc. ICASSP, 2016.

[15] D. Snyder, P. Ghahremani, D. Povey, D. Garcia-
Romero, Y. Carmiel, and S. Khudanpur, “Deep neu-
ral network-based speaker embeddings for end-to-end
speaker verification,” in Proc. SLT Workshop, 2016.

[16] X. Teng, X. Tian, J. Rowland, and D. Poeppel, “Concur-
rent temporal channels for auditory processing: Oscilla-
tory neural entrainment reveals segregation of function
at different scales,” Plos Biology, vol. 15, no. 11, 2017.

[17] R. Huang, Z. Shu, T. Li, and R. He, “Beyond face rota-
tion: global and local perception gan for photorealistic
and identity preserving frontal view synthesis,” in Proc.
ICCV, 2017, pp. 2458–2467.

[18] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” in
Proc. ICLR, 2015.

[19] H. Bredin, “Tristounet: triplet loss for speaker turn em-
bedding,” in Proc. ICASSP, 2017, pp. 5430–5434.

[20] S. Dey, T. Koshinaka, P. Motlicek, and S. Madikeri,
“Dnn based speaker embedding using content informa-
tion for text-dependent speaker verificaiton,” in Proc.
ICASSP, 2018.

[21] S.J.D. Prince and J.H. Elder, “Probabilistic linear dis-
criminant analysis for inferences about identity,” in
IEEE 11th International Conference on Computer Vi-
sion, 2007, pp. 1–8.

[22] D. Garcia-Romero and C.Y. Espy-Wilson, “Analysis of
i-vector length normalization in speaker recognition sys-
tems,” in Proc. Interspeech, 2011, pp. 249–252.

[23] A. Larcher, K.A. Lee, B. Ma, and H. Li, “Text-
dependent speaker verification: Classifiers, databases
and rsr2015,” Speech Communication, vol. 60, pp. 56–
77, 2014.

[24] D. Povey, A. Ghoshal, G. Boulianne, L. Burget,
O. Glembek, N. Goel, M. Hannemann, P. Motlicek,
Y. Qian, P. Schwarz, et al., “The kaldi speech recog-
nition toolkit,” in Proc. ASRU Workshop, 2011.

[25] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A
unified embedding for face recognition and clustering,”
in Proc. CVPR, 2015, pp. 815–823.

[26] L. v. d. Maaten and G. Hinton, “Visualizing data using
t-sne,” Machine Learning Research, 2008.

6315


		2019-03-18T11:19:05-0500
	Preflight Ticket Signature




