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ABSTRACT

In this paper, the importance of analytic phase of the speech sig-
nal in automatic speaker verification systems is demonstrated in the
context of replay spoof attacks. In order to accurately detect the
replay spoof attacks, effective feature representations of speech sig-
nals are required to capture the distortion introduced due to the inter-
mediate playback/recording devices, which is convolutive in nature.
Since the convolutional distortion in time-domain translates to addi-
tive distortion in the phase-domain, we propose to use IFCC features
extracted from the analytic phase of the speech signal. The IFCC
features contain information from both clean speech and distortion
components. The clean speech component has to be subtracted in
order to highlight the distortion component introduced by the play-
back/recording devices. In this work, a dictionary learned from the
IFCCs extracted from clean speech data is used to remove the clean
speech component. The residual distortion component is used as a
feature to build binary classifier for replay spoof detection. The pro-
posed phase-based features delivered a 9% absolute improvement
over the baseline system built using magnitude-based CQCC fea-
tures.

Index Terms— Convolutional distortion, dictionary learning,
Gaussian mixture models, IFCC features.

1. INTRODUCTION

Unlike artificial person authentication techniques such as passwords
and identity cards, biometric techniques are going to be the future
of person authentication. Voice is an important personal trait used
in speaker authentication systems. Automatic speaker verification
(ASV) system is a powerful biometrics solution as the verification
could be done remotely through voice communication. Unfortu-
nately, ASV systems are vulnerable to various spoofing attacks [1,
2]. Intentional circumvention in the security of ASV systems using
fake audio recordings is referred to as spoofing attacks or presen-
tation attacks. Spoofing attacks include impersonation, speech syn-
thesis, voice conversion and replayed speech. Most spoof detection
studies focus on the first three attacks and reliable counter measures
have been developed. The studies on replay attack accelerated after
the ASV spoof challenge [3].

In the light of recent events involving replay attacks, counter
measures have been receiving much attention. Replay attacks are
so simple that any one can easily record the genuine person’s voice
with high quality recording devices and it does not require any ex-
pertise in signal processing. Efforts are afoot to design spoof de-
tection systems that discriminate fake signals from authentic ones
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[4]. The performance degradation of ASV systems in case of spoof-
ing attacks was demonstrated by Villalba et al. [5]. In the recent
past, researchers have been pursuing the problem from the aspects
of feature extraction/representation and system level modelling for
classification of the features.

Among the various kinds of speech features, magnitude spectral
features extracted from the short-time Fourier transform (STFT) of
the speech signal are more popular in speech applications. Massim-
iliano Todisco, et al., in their seminal work [6] introduced special-
ized features called Constant Q Cepstral Coefficients (CQCCs) for
spoof detection. These features are extracted by applying real cep-
stral analysis on the constant Q transform (CQT) [7] of the speech
signal. The placement of frequency bins of the CQT is motivated
from the human perception mechanism [8]. In contrast to the linear
frequency bins of the Fourier transform, the center-frequencies of
the CQT filters are geometrically spaced in order to maintain a con-
stant Q-factor, across the filters. This provides variable frequency-
resolution, and captures detailed characteristics which are missed in
other feature extraction techniques.

Recently, ASVspoof 2017 challenge that aims at the task of re-
play spoof detection, aided the researchers to explore the solution
to the problem in different perspectives. The summary of the chal-
lenge with preliminary evaluation results can be found in [9]. An
experimental study of different features on spoof detection systems
was presented in [10]. Different steps in the development of spoof
detection systems was investigated in [11].

When speech is replayed through a playback device, the acoustic
characteristics have very subtle differences from the original speech,
thus making it hard to detect the spoof attack. The distortion in-
troduced by the recording/playback device for detecting the replay
attacks [12]. In [13], an estimate of the live speech component is
subtracted from the replayed speech, in the magnitude spectral do-
main, to highlight the device characteristics. In this paper, we ex-
plore the importance of analytic phase of the speech signal in replay
spoof detection, using instantaneous frequency cosine coefficients
(IFCC) features. The performance of the proposed IFCC features is
evaluated on ASVspoof-2017 database and compared with constant-
Q cepstral coefficients (CQCC), mel-frequency cepstral coefficients
(MFCC) and modified group-delay coefficients (MDGC).

The rest of the paper is organized as follows. Section 2 dis-
cusses the IFCC extraction from analytic phase of speech signal. In
Section 3, dictionary learning based method is described to highlight
the device characteristics in IFCC features. Section 4 presents exper-
imental evaluation of the proposed features, and compares them with
the baseline results. Section 5 summarizes this work and points to
some possible future directions.
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2. FEATURE EXTRACTION FROM INSTANTANEOUS
FREQUENCIES

The analytic signal sa(t) of a continuous-time signal s(t) contains
only the positive frequency components [14]. The analytic signal
can be computed in the time-domain as

sa(t) = s(t) + jsh(t), (1)

where sh(t) is the Hilbert transform of s(t), given by

sh(t) =
1

πt
∗ s(t). (2)

The analytic signal in (1) can be expressed in the polar form as

sa(t) = |sa(t)| exp(jφ(t)) (3)

where |sa(t)| =
√
s2(t) + s2h(t) and φ(t) = tan−1

(
sh(t)
s(t)

)
de-

note the instantaneous amplitude and instantaneous phase of s(t),
respectively. The time-derivative of the unwrapped instantaneous
phase is referred to as the instantaneous frequency (IF), and is given
by

φ′(t) =
dφ(t)

dt
(4)

Even though IF can be computed for any arbitrary signal, it has a
physical interpretation only when s(t) is a narrowband (NB) signal.
Hence, a wideband signal like speech is typically passed though a
bank of K NB filters, and IF is computed on the filtered outputs.
The analytic signal of the kth filter output sk(t), centered at Ωk, can
be expressed as

sak(t) = |sak(t)| exp(Ωkt+ θk(t)) (5)

where θk(t) denotes the instantaneous deviation of the phase from
Ωkt. For the NB case, the IF

φ′k(t) = Ωk + θ′(t), (6)

provides a measure for IF deviation θ′k(t) of the signal sk(t) from
its center frequency Ωk [15].

The IF of a signal is a measure which is often of significant
practical importance [15]. However, in practice, the computation
of IF suffers from the phase wrapping problem [16]. In order to
circumvent the phase wrapping problem, we use the IF computation
method using Fourier transform relations, proposed in [17]. In this
method, the IF of the kth filtered component sk[n] can be computed
in the discrete-domain as

φ′k[n] =
2π

N
<
{
F−1(l Sk[l])

F−1(Sk[l])

}
(7)

where N is the length of the NB signal sk[n], Sk[l] is the N−point
discrete Fourier transform of sk[n], < denotes the real-part andF−1

denotes the inverse discrete Fourier transform.
NB components of the speech signal are extracted using a bank

of K linearly spaced Gaussian shaped NB filters. IF is estimated
for each of these K NB components. In order to estimate frame-
level features, the IF contours are averaged over a short frames of 25
ms shifted by 10ms, resulting in a K−dimensional mean IF vector.
Discrete cosine transform is applied on the K−dimensional mean
IF vector to pack the information compactly, and first 20 dimensions
are retained for modeling. The resulting lower dimensional repre-
sentation extracted from the IF are referred to as the instantaneous
frequency cosine coefficients or IFCC features.

3. HIGHLIGHTING DEVICE-SPECIFIC FEATURES
USING DICTIONARY LEARNING

The aim of replay spoof detection is to determine that a given
speech utterance is from a live speaker or an intermediate record-
ing/playback device. The device can be assumed to be a linear
time invariant (LTI) system with an impulse response of h(t), the
replayed signal r(t) can be expressed in terms of the live speech
signal s(t) as,

r(t) = s(t) ∗ h(t). (8)

In the case of live-speech, the impulse response h(t) reduces to δ(t),
the ideal distortion less channel. Development of a robust spoof de-
tection system requires features that highlight the intermediate de-
vice characteristics, i.e., we need to extract features that character-
ize h(t) from the recorded signal r(t). The convolutive relationship
in (8) transforms to multiplicative relationship in the frequency do-
main, and is given by

R(jΩ) = S(jΩ)H(jΩ). (9)

As a consequence, the Fourier phase and the group-delay (GD) admit
an additive relationship, i.e.,

τr(Ω) = τs(Ω) + τh(Ω) (10)

where τr(Ω), τs(Ω) and τh(Ω) are the group-delays GDs of r(t),
s(t) and h(t) respectively. While the additive relation of phases
Fourier domain is exact, such a relation is not straightforward for
phases in the analytic signal domain. For case of asymptotic signals,
the class of signals whose IF and GD relations are approximately
the same function of the whole range of frequencies, the relation-
ship between IFs of the convolved signal can be derived from their
GDs [18]. In this paper, we assume that the deviations of IF θ′k(t) of
r(t), s(t) and h(t), from the center frequency Ωk are related by

θ′rk(t) = θ′sk(t) + θ′hk(t). (11)

Hence the IF of the replayed speech signal contains additive distor-
tion introduced by the device characteristics.

Pyknograms in Fig. 1 illustrates the effect of distortion intro-
duced by the device characteristics in the IF domain. Pyknogram
visualizes the IF variations along the time-frequency plane Fig. 1(a)
shows pyknogram of a live speech signal, while Fig. 1(b) shows py-
knogram of its replayed version, and hence it suffers from device
distortion. The additive distortion introduced by the intermediate
playback/recording device disturbs the density of IF contours, lead-
ing to distortion of formant structure. This phenomenon can be ob-
served in the high frequency region of replayed signal in Fig. 1(b).

The IFCC feature vectors extracted from the replayed speech
signal r contains an additive combination of clean speech component
s and device distortion component h, i.e., r = s + h. In the case of
live speech recording, the device distortion h should be ideally zero.
Hence, in order to distinguish the live speech from replayed speech,
we need to rely on the features highlighting the device distortion
component h. Since, we do not have direct access to the device
distortion component h, we propose to subtract an estimate of the
live speech component ŝ from the replay speech r to highlight the
device distortion component h. In our earlier work using magnitude
spectral features, we proposed a dictionary learning based method
for this purpose [13].

An estimate of the live speech component s in the replayed
speech r can be obtained by it onto the acoustic space spanned by the
live speech. The acoustic space spanned by live speech is modeled
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Fig. 1. Effect of device characteristics on IF. (a) Pyknogram of live speech and (b)Pyknogram of replayed speech.

by learning an overcomplete dictionary A from the live speech data.
Sparse representations have been shown to be effective for speaker
identification [19]. The K-singular value decomposition (K-SVD)
algorithm, proposed by Aharon et al., is used for joint optimization
of dictionary atoms and sparse weights [20]. Since, the dictionary A
is trained on the live speech data, it is better suited to approximate
the live speech utterances than their replayed counterparts. As a con-
sequence, the error vectors from the sparse approximation provides
an estimate of the device distortion component. Hence, the resid-
ual error vectors can be used as features for replay spoof detection.
Given a feature vector y extracted from a test utterance, it can be
represented using a sparse weight vector x and learned dictionary A
by solving

min
x
‖x‖0 , subject to y = Ax. (12)

using the orthogonal matching pursuit (OMP) algorithm [21]. The
residual error vector in this approximation

e = y −Ax (13)

can be used as a feature to detect replayed speech.
The t-stochastic neighbourhood embedding (t-SNE) plots in

Fig. 2 demonstrate the effectiveness of the proposed dictionary
learning approach in extracting the device specific features. In the
t-SNE plot of raw IFCC features (Fig. 2(a)), there is a significant
overlap between the live and replayed speech utterances. However,
in the t-SNE plot of residual errors (Fig. 2(b)), the replayed speech
utterances are widely spread out, while the live speech utterances
are concentrated around the origin. The concentration of live speech
utterances around the origin can be attributed to the fact that the
error vector e will be much lower for the live speech utterances.
Hence, the density of the error vectors can be used to distinguish the
replayed speech from live speech.

Given the live and replayed speech utterances, the residual er-
ror vectors are estimated using the overcomplete dictionary learned
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Fig. 2. Effect of highlighting device-specific characteristics. t-SNE
plot of (a) raw IFCC features and (b) residual IFCC features.

from the live speech data. Two separate GMMs λL and λR are used
to model the residual error vector distributions of live and replayed
speech signals, respectively. Expectation maximization (EM) algo-
rithm [22] is used to estimate the GMM parameters. Given a se-
quence of error vectors E extracted from an unknown test utterance,
hypothesis testing is performed to classify it as either live or replayed
speech. The confidence score is calculated as

P (E/λR)

P (E/λL)

replay
>
<
live

η (14)

where P (E/λR) and P (E/λL) denote the likelihood data being
generated from replayed and live speech models, respectively. The
threshold η can be adjusted according to the required operating
point. Too large a value of η leads to misdetections, while too small
a value results in false alarms.
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4. EXPERIMENTAL EVALUATION

The performance of the proposed IFCC based features was evalu-
ated on the recently released ASVspoof 2017 corpus [23] as a part
of the ASVspoof challenge 2017 [3]. The live speech data, con-
sisting of RedDots utterances [24] of about 3-5 sec, was collected
in diverse acoustic environments. Spoof data is created by replay-
ing/rerecording these utterances on heterogeneous devices in differ-
ent acoustic environments. All the speech data is sampled at 16 kHz.
The dataset is divided into three sets - train, development (dev) and
evaluation (eval) - each with disjoint set of speakers across them.
The train set was used for building the models, and development set
was used to fine-tune the hyper-parameters of the system. The per-
formance of the overall system is evaluated on the blind evaluation
dataset.

The speech signal is passed using a bank of 60 Gaussian shaped
linearly-spaced filters with 200 Hz bandwidth to obtain multiple NB
components. Smoothed IF is computed on each of these NB compo-
nents, after taking a moving average of the numerator and denomi-
nator of (7) separately. The smoothed IF is averaged over frames of
25 ms, shifted by 10 ms, to obtain mean IF vector for each frame.
IFCC features are extracted by applying DCT on mean IF vectors
and retaining the first 20 coefficients in the DCT domain. The IFCC
features are appended with their first and second order derivatives,
that result in a 60-dimensional feature vector for further process-
ing. In order to highlight the device-specific characteristics, an over-
complete dictionary with 1000 atoms was trained, on the IFCCs
extracted from the live speech data, with a sparsity constraint pa-
rameter of τ = 5, using K-SVD algorithm. The trained dictionary
is used to estimate the live speech component from the IFCCs ex-
tracted from the replayed speech using OMP algorithm. The esti-
mated live speech component is subtracted from replayed speech to
obtain device-specific error vectors. The features extracted from live
and replayed speech are modeled using two 512 mixture GMMs.
Given a test utterance, hypothesis testing is performed to classify it
as either live or replayed. The threshold parameter η in (14) is tuned
using the development set. The sparsity constraint τ is optimized
empirically using the development dataset. The effect of τ on the
performance of spoof detection task is shown in Fig 3. Too small a τ
is not sufficient to approximate the live speech component, whereas
too large a value allows the channel distortion into the approxima-
tion. Hence, we have chosen τ = 5 in all the further studies.

The performance of the proposed analytic phase features is com-
pared with short-time spectral magnitude (MFCC & CQCC) and
short-time spectral phase (MGDC) features. All the short-time spec-
tral features are extracted from 25 ms of hamming windowed speech
signal, shifted by 10 ms. In this study, we have used 13-MFCCs,
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Fig. 3. Effect of sparsity on the performance of spoof detection

Table 1. Peformance of spoof detection system on ASVspoof - 2017
dataset, in terms of %EER

Feature Raw features Error features
CQCC 24.65 22.45
MFCC 30.48 21.4
MGDC 30.00 34.5
IFCC 23.44 15.00

MFCC+IFCC 13.99

30-CQCCs and 12-MGDCs along with their first and second order
derivatives. For all the three features, we followed exactly the same
modeling procedure as that of the IFCC features. The performance
of the spoof detection system is evaluated in terms of equal error rate
(EER), the point at which the false-acceptance and false-rejection
rates are equal. The performance of different features on the eval-
uation set of the ASVspoof-2017 dataset is given in Table. 1. The
CQCC/GMM sytem marked with (∗) is the baseline system supplied
by the organizers of the ASVspoof challenge - 2017.

The proposed IFCC feature vectors outperform the other fea-
tures, both in raw form as well as in error vector from. The er-
ror vectors extracted from the dictionary learning performed consis-
tently better on all the feature types. In the case of MFCC and IFCC
features, this improvement is substantial. i.e., in the order of 8% ab-
solute improvement over the raw features. Hence, the evidence form
the MFCC and IFCC error vector systems are combined to achieve
the best performance of 13.99%, which is almost 10% relative im-
provement over the baseline system. These results substantiate that
analytic phase captures the crucial information for discriminating
live speech from the replayed speech.

5. CONCLUSION

This work highlights the importance of analytic phase in the context
of replay attacks in ASV systems. The features derived from the
instantaneous frequency, which is time derivative of phase, is used
to capture the subtle acoustic variations in live and replayed speech.
An overcomplete dictionary is learned from the features extracted
from the live speech data. The residual components are obtained for
a given utterance by subtracting the live speech contribution from
the learned dictionary. GMMs are trained on the residual compo-
nents from live and replayed speech. Hypothesis test based on a
threshold provides the decision on whether a given utterance is live
speech or playback from a recording device using the likelihoods
produced from the respective GMMs. IFCC features perform bet-
ter than magnitude based features such as MFCC and CQCCs and
also other phase based features MGDCs based on group delay. The
score fusion of MFCC and IFCC features outperforms the individual
features as the magnitude and phase based features provide acous-
tic information from the complete spectrum. This clearly signifies
the role of analytic phase in detection of replay attacks in automatic
speaker verification systems.
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