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ABSTRACT

Speaker diarization tells who spoke and when? in an audio
stream. SincNet is a recently developed novel convolutional
neural network (CNN) architecture where the first layer
consists of parameterized sinc filters. Unlike conventional
CNNs, SincNet take raw speech waveform as input. This
paper leverages SincNet in vanilla transfer learning (VTL)
setup. Out-domain data is used for training SincNet-VTL to
perform frame-level speaker classification. Trained SincNet-
VTL is later utilized as feature extractor for in-domain data.
We investigated pooling (max, avg) strategies for deriving
utterance-level embedding using frame-level features ex-
tracted from trained network. These utterance/segment level
embedding are adopted as speaker models during clustering
stage in diarization pipeline. We compared the proposed
SincNet-VTL embedding with baseline i-vector features.
We evaluated our approaches on two corpora, CRSS-PLTL
and AMI. Results show the efficacy of trained SincNet-VTL
for speaker-discriminative embedding even when trained on
small amount of data. Proposed features achieved relative
DER improvements of 19.12% and 52.07% for CRSS-PLTL
and AMI data, respectively over baseline i-vectors.
Index Terms: Speaker Clustering, SincNet, Audio Diariza-
tion, Peer-led team learning, Transfer Learning.

1. INTRODUCTION

Speaker Diarization is front-end for multi-subject speech
technologies [1]. It provides solution for who spoke and
when? [2]. In general, it is an unsupervised/semi-supervised
system. It consists of sub-systems: (i) speech activity de-
tection (SAD) [3, 4]; (ii) speaker change detection; (iii)
clustering; and (iv) re-segmentation where step (iv) is op-
tional. Some approaches combined step (ii) and (iii) into
joint segmentation and clustering [5]. Practical applications
of speaker diarization [6] include broadcast new analysis,
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low-latency speaker spotting [7] and behavioral study [8, 2]
etc.

State-of-the-art diarization systems use i-vectors in speaker
clustering [4]. Recently, neural network embedding (d-
vectors) were benchmarked for diarization task. However,
most deep neural network based speaker embedding extractor
are trained on significantly large amount of data which is
not always available [10]. Recently, CNNs were explored
for deriving speech representations for a variety of tasks.
Such approaches use magnitude spectrum for speech feature
learning. The idea of exploring a first layer with parameter-
ized Gaussian filters in a deep neural network was explored
for speech recognition [11]. It was trained at frame-level
using spectrogram features [11]. Some studies evaluated cus-
tom layer consisting of Gabor filters using power-normalized
spectrum as input for speech recognition [12]. More recently,
using raw waveform for training neural network is an emerg-
ing trend. This approach is advantageous as it eliminates
the feature extraction pipeline. Learning from time-domain
signal showed good results for tasks such as speech recogni-
tion [13], emotion identification [14], speaker verification [9]
etc.

In this paper, we investigate SincNet for speaker diariza-
tion where the first layer consists of sinc filters. Sinc-Layer
learns compact band-pass filters suitable for speaker model-
ing. It is parameterized by cut-off frequencies of these band-
pass filters. The gain of sinc filters is learned by later (convo-
lutional and fully connected) layers in SincNet architecture
(see Fig. 2). SincNet was developed for speaker recogni-
tion in practical scenario where small training data (few sec-
onds/speaker) was available while the test utterances were
very short [9]. We leverage efficient SincNet in a vanilla
transfer learning (VTL) setup where the SincNet was trained
for frame-level speaker recognition on out-domain data and
later trained SincNet-VTL was used for extracting speaker
embedding from in-domain data (see Fig. 1). We investigated
several possibilities for extracting features, namely F1, F2 and
F3 that were later pooled to fetch segment-level speaker mod-
els. We employed length-normalized SincNet-VTL embed-
ding in a diarization pipeline that uses ground-truth speaker

6296978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



Fig. 1. Proposed SincNet-VTL approach for extracting speaker embedding from time-domain speech. (a) In Stage 1, SincNet
is trained for frame-level speaker identification using out-domain data. (b) In Stage 2, we adopt the trained SincNet as feature
extractor for in-domain data. We max() or avg() pooled frame-level features to get utterance-level embedding.

Fig. 2. The architecture of waveform SincNet [9]. Sinc-Layer
performs time-domain convolutions on raw speech. Next, two
1D convolutional layers and three fully connected layers filter
the input. Final soft-max layer perform speaker classification.

segmentation and spherical K-means clustering.

2. PROPOSED APPROACH

This section explains the proposed approach for SincNet-
based vanilla transfer learning (SincNet-VTL) as depicted
in Fig. 1. SincNet was trained using out-domain TIMIT
data [15]. Trained SincNet was adopted as feature extractor
for in-domain data such as CRSS-PLTL and AMI corpora
(see Section 3.1).

2.1. SincNet Architecture

Recently, SincNet was developed as an efficient architecture
for processing raw speech waveform for speaker recogni-
tion [9]. Fig. 2 shows the SincNet architecture that consists
of six hidden layers, namely, Sinc-Layer, two 1D convolu-
tional, and three fully connected layers. Sinc-Layer performs
sinc-based convolutions on overlapping frames (200ms with
10ms skip rate) of time-domain signal. After the Sinc-Layer,
standard CNN pipeline (pooling, batch normalization, ReLU
activation, dropout) was employed. As shown in Fig. 1, Sinc-
Layer, CNN1 and CNN2 were followed by fully connected

layers FC1, FC2 and FC3. Sinc-Layer has 80 sinc filters
each with a length of 251 and max pooling over 3. Both
CNN1 and CNN2 layers had 60 filters each with length 5 and
max pooling over 3. Sinc-Layer, CNN1 and CNN2 employ
layer normalization [16] and leaky ReLU activation. Three
fully connected layers namely FC1, FC2 and FC3 had same
configuration i.e., 2048 nodes, batch normalization [17] and
leaky ReLU activation. Final soft-max layer has number of
nodes equal to speaker count in the training data. This archi-
tecture takes raw speech from 200ms time-windows (frames)
with 10ms skip rate and trained for speaker recognition at
frame-level.

Sinc-Layer learn the formats and pitch trajectory that fa-
cilitate efficient speaker modeling [9] and results in compact
representation. Unlike fully connected layers, convolutional
ones focus on local regions of the input and extract shift-
invariant features that enhances overall recognition perfor-
mance. Sinc-Layer consists of parameterized sinc functions
that act as band-pass filters in spectral domain. Discrete-time
sinc filter is given as:

h[m, f1, f2] = 2f2 · sinc(2πf2m)−2f1 · sinc(2πf1m) (1)

The sinc(·) functions in above equation is defined as

sinc(x) = sin(x)/x. (2)

Thus, the Sinc-Layer tries to learn lower and upper cut-off
frequencies for filters parameterized by its nodes. For results
discussed in this paper, we initialized these with the cutoff
frequencies of the Mel filter-bank. Such initialization is pre-
ferred as it has more filters in lower frequency spectrum that
quantifies speaker characteristics. There are two constraints
in Eqn. 1 that need to be satisfied: f1 ≥ 0 and f2 ≥ f1. In
fact, Eqn. 1 is employed with the following cut-off frequen-
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cies:

f ′1 = |f1|
f ′2 = |f1|+ |f2 − f1|

(3)

From above equations, we see that Sinc-Layer tried to learn
only the cut-off frequencies. Next, convolutional and fully
connected layers learn the gains for each sinc filter by assign-
ing appropriate weights. Passband ripples in sinc filter are
mitigated by Hamming windowing that smoothed the abrupt
discontinuities. Thus, we have:

hw[m, f ′1, f
′
2] = h[m, f ′1, f

′
2] · whamming[m], (4)

where the Hamming window (of length L) is defined as

whamming[m] = 0.54− 0.46 · cos
(

2πm

L

)
. (5)

The cutoff frequencies of Sinc-Layer are learned jointly with
other parameters of SincNet architecture using stochastic gra-
dient descent. SincNet is attractive for speaker modeling due
to properties such as fast convergence, compact architecture
(few parameters), and computational efficiency (symmetric
sinc functions).

2.2. SincNet-VTL for Speaker Modeling

Speaker embedding extracted from trained neural networks
are emerging alternatives to i-vectors for speaker modeling.
SincNet is a recently developed novel architecture designed
for efficient processing of raw waveform [9]. Researchers
found SincNet superior to CNN for speaker recognition and
verification tasks [9]. We used SincNet trained on out-domain
data for vanilla transfer learning (VTL). We propose to lever-
age out-domain data in speaker diarization through SincNet-
VTL approach (see Fig. 1).

We used TIMIT corpus [15] as out-domain data for train-
ing SincNet. We ensured text-independent speaker modeling
by not including utterances with same text for all speakers,
in the training data. Non-speech at the start and end of each
utterance was discarded for SincNet training. Time-domain
speech signal was divided into 200ms frames with 10ms
skip-rate. SincNet was trained using raw speech waveform
for frame-level speaker recognition. Sinc-layer parameters
were initialized with Mel-scale cutoff frequencies while rest
of the network was initialized with Glorot scheme [18]. Final
soft-max layer implements frame-level speaker classification.
The complete network was trained jointly using RMSprop
optimizer with learning rate 0.001. We trained it for 360
epochs with batch size of 64. Trained SincNet-VTL has 462
nodes in output layer corresponding to speakers in training
data. We tuned network hyper-parameters on TIMIT corpus.
During embedding extraction on CRSS-PLTL corpus there
were some segments that lasts for less than 200ms. We re-
peated those segments until it becomes a segment of 1s for

Fig. 3. PLTL data: Comparing i-vector with average pooled
F1, F2 and F3 embeddings. w/o PCA means without PCA
based dimension reduction.

getting speaker embedding. Since SincNet-VTL was trained
on 200ms windows with 10ms skip-rate, we needed at-least
200ms for doing a forward pass on trained SincNet-VTL.
We propose pooling frame-level features extracted using
trained SincNet-VTL for getting segment-level embedding
(see Fig. 1b).

3. EXPERIMENTS & RESULTS

3.1. CRSS-PLTL Corpus

In collaboration with Student Success Center at UT Dallas,
we collected the CRSS-PLTL corpus [2, 19]. It contains
multi-stream audio recordings from five PLTL teams over 11
week each, thus leading to 55 sessions. These five teams were
chosen from an undergraduate chemistry course. Each PLTL
session lasted for approximately 80 minutes and constitute
discussions between 6-8 students plus a peer-leader. Peer
leader guides the group to arrive at correct solutions without
explicitly telling the solution.

During PLTL sessions, each participant wore a LENA
device (with not-so-close microphone) for collecting nat-
uralistic audio [20, 21, 22]. In this manner, we collected
multi-stream audio for each session (number of streams was
same as total participants). The salient features of this data
are: (i) many segments with overlapped-speech; (ii) short
conversational-turns; (iii) multiple noise-sources; and (iv)
reverberation. These factors made PLTL speaker diarization
challenging. In this paper, we choose the channel correspond-
ing to PLTL leader for single-channel diarization evaluation.
This evaluation set has 8 speakers and lasted for about 80
minutes. It is important to note that many speaker turns lasted
for less than or equal to 1 second.

3.2. AMI Corpus
Augmented Multi-party Interaction (AMI) corpus provides
speaker annotated multi-modal data from meeting scenarios.
In this paper, we choose 6 meetings from AMI corpus as eval-
uation set. These six meetings have four speakers each. We
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Fig. 4. AMI: 6 meetings. F2-avg with PCA (51 dim.) shows
significant improvements over i-vector with PCA (51 dim.).

used mixed headset audio for experiments reported in this
paper. Our AMI evaluation set consists of sessions: IS1006d
(31 min.), IS1003d (36 min.), IS1001a (16 min.), IS1000a (27
min.), IS1003b (27 min.) and IS1008d (25 min.).

3.3. Evaluations

Diarization error rate (DER) was used for scoring the systems
with respect to ground-truth annotations. It was introduced
in the NIST Rich Transcription Spring 2003 evaluation (RT-
03S). It is defined as the total percentage of reference time
that is not correctly attributed to a speaker. Mathematically,
DER is given as:

DER =
Φfa + Φmiss + Φspk

Φtotal
, (6)

where Φtotal is the total time of all reference segments, Φfa

is the system speaker-time not attributed to the reference
speaker, Φmiss is the total reference speaker-time not at-
tributed to a system speaker, and Φspk is the total reference
speaker-time attributed to a wrong speaker. Unlike NIST RT
evaluations [23], no forgiveness collar was allowed during
scoring for results presented in this paper. We adopted the
NIST md-eval scoring script (version-22) for DER computa-
tions.

We kept all audio data at 16 kHz for experiments reported
in this paper. We trained an i-vector extractor on TIMIT us-
ing ground-truth SAD. Since main focus of this paper is to
develop a speaker model for diarization, we used ground-
truth speaker segmentation information. In this paper, we
adopted 75-dimensional (dim.) i-vector as many segments in
PLTL were approximately 1s duration (or shorter). SincNet
speaker embeddings has dimensions: F1 (462), F2 (2048),
F3 (6420). For all our experiments reported here, we per-
form length-normalization of i-vectors/embeddings followed
by spherical K-means clustering with cosine similarity. For
some experiments, we employed principal component analy-
sis (PCA) for dimension reduction to 51. Table 1 shows the
effect of PCA (51 dimension) on DER (%) for three features:

Table 1. CRSS-PLTL data: Effect of PCA (51 components)
on DER (%) for i-vector, F2-avg and F2-max features.

i-vector F2-avg F2-max
w/o PCA 15.26 13.37 43.55

PCA 15.26 12.81 14.36

i-vectors, F2-avg and F2-max where the latter two are aver-
age and max pooled version of frame-level F2 embeddings
from trained SincNet-VTL network (see Fig. 1). Fig. 3 shows
the comparison of i-vector with average pooled F1, F2 and
F3 embeddings with PCA on PLTL data. Fig. 4 shows DER
for 6 meetings of AMI corpus (see Section 3.2) using i-vector
baseline and best proposed feature, i.e., F2-avg.

4. DISCUSSIONS & CONCLUSIONS

We employed principal component analysis (PCA) for di-
mension reduction of speaker embedding and i-vectors. We
choose PCA with 51 components for both CRSS-PLTL and
AMI evaluation sets. Since comparative studies in this paper
were focused on speaker modeling, our diarization pipeline
consists of ground-truth speaker segmentation and uses spher-
ical K-means clustering with cosine similarity. SincNet-VTL
embedding (F1/F2/F3) or i-vectors were extracted from all
segments for speaker modeling. We always perform length
normalization of speaker features just before clustering.
Some experiments had PCA-based dimension reduction prior
to length-normalization.

Looking at Table 1, we see that i-vector did not get DER
improvements from PCA as i-vectors were already lower di-
mensional. We see F2-max embedding have benefited the
most with PCA. Even if F2-avg has got relatively small re-
duction in DER with PCA as compared to F2-max, we get the
best DER using PCA on F2-avg embedding. After this point,
we stick to average pooling as it was better than max pooling
for all the three embedding. Fig. 3 shows that F2-avg is best
feature for speaker diarization leading to absolute and relative
DER improvements of 2.45% and 19.12%, respectively with
respect to i-vector baseline. These comparisons were done on
PLTL evaluation set as it is our target domain. Fig. 4 shows
comparison of F2-avg with i-vector features for AMI data.
Proposed F2-avg embedding gave significant DER (%) im-
provement as compared to i-vector baseline on AMI data. On
average, F2-avg leads to absolute and relative DER improve-
ments of 2.39 % and 52.06%, respectively over i-vectors. In
this paper, two type of pooling operations were performed on
frame-level features to get segment-level embedding : max()
and avg(). While max() pooling pick maximum value along
each feature dimensions, avg() pooling averages along each
dimension. As the results showed in last section, avg() pool-
ing performs better than max() for all three types of proposed
speaker embedding.
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